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Abstract

Operators of ridehail platforms such as Lyft and Uber will likely be early-adopters of
autonomous electric vehicles (AEVs), since AEVs promise to reduce costs, be safer, and
more efficient. While studies on the operation of ridehail systems with AEVs exist, nearly
all have ignored the need to recharge the vehicles during operation. We address this here in
our work on the ridehail problem with AEVs (RP-AEV).
In the RP-AEV, a decision maker (DM) operates a fleet of AEVs that serve requests arising
randomly throughout a region. The DM is responsible for assigning AEVs to requests, as
well as repositioning and recharging AEVs in anticipation of future requests. We model the
RP-AEV as a Markov decision process.

We compare classical approximate dynamic programming (ADP) solution methods with
those of deep reinforcement learning (RL), which have garnered enthusiasm but achieved
only limited success to date in operational problems. From ADP, we explore novel heuristic
policies, both alone and combined with lookaheads. From RL, we build on the approach
from Holler et al. (2018). We employ neural-networks (NNs) both to determine the state
representation (with single-layer NNs) and to learn state-action value functions (with deep
NNs) using Q-learning.
Additionally, we establish a dual bound to gauge the effectiveness of these approaches by
calculating the expected value with perfect information. With perfect information, the RP-
AEV may be decomposed so as to permit a solution via Benders decomposition, where the
master problem assigns AEVs to requests, and the subproblem provides instructions for
repositioning and recharging.
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