Designing routes for vehicles and drivers

Juan-José Salazar-González (Universidad de La Laguna, Spain)

Sevilla 3 June 2019

A D F A B F A B F A B F

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019

Contents

- Need of optimization!
- Crew-and-aircraft routing
- Crew-and-aircraft rostering

2 The Vehicle and Driver Scheduling Problem

- Examples of solution
- Problem formulation
- Valid inequalities & Cutting plane phase
- Computational results
- 3 The Driver and Vehicle Routing Problem
 - Examples of solution
 - Problem Formulation
 - Valid Inequalities & Cutting plane phase
 - Computational results

Motivation: case study in air transport

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

- Need of optimization!
- Crew-and-aircraft routing
- Crew-and-aircraft rostering

2 The Vehicle and Driver Scheduling Problem

- Examples of solution
- Problem formulation
- Valid inequalities & Cutting plane phase
- Computational results

3 The Driver and Vehicle Routing Problem

- Examples of solution
- Problem Formulation
- Valid Inequalities & Cutting plane phase
- Computational results

A D F A B F A B F A B F

Motivation: case study in air transport

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Bad time for regional airline companies; closed in Spain since 2000:

- Galicia. Prima Air
- Navarra. Líneas Aéreas Navarras (Air Truck)
- Málaga. Pauknair
- Vitoria. ERA
- Mallorca. Air Europa Express
- Málaga. Binter Mediterráneo
- Baleares. Aebal (closed on September 2008)
- La Rioja. Iberline
- Barcelona. Air Catalunya. Intermed
- Asturias. Air Asturias (closed on January 2007)
- La Rioja. Rioja Airlines (closed on 9 September 2007)
- León. Lagun Air (closed on January 2005)
- Córdoba. Flysur (Taer Andalus) (closed on 9 October 2008)
- Almería. Ándalus (closed on June 2010)
- Granada. Helitt (closed on 23 September 2014)
- Canarias. Top Fly (closed on Nov 2009). Islas Airways (closed on August 2014)

Not mentioning larger airlines in Spain like: LTE, Hola Airlines, Bravo Airlines, Quantum Air, Spantax, Volar Airlines, Tadair, Futura, Air Madrid, Air Comet, Spanair.

Regional airlines operating today in Spain: Air Nostrum, Binter Canarias, CanaryFly.

Conclusions

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

One geographical region, 2 provinces, 8 airports

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

The company: BinterCanarias (www.bintercanarias.com)

• 11 airports: LPA, TFN, TFS, SPC, VDE, ACE, FUE, GMZ ; FNC, EUN, RAK

- 18 aircrafts ATR 72
- around 150 daily flights from 07:00 to 23:00
- It moves 80% for the air transport between Canary Islands
- It transported around 2,600,000 persons in 2014
- aircrafts and crews are divided in 3 operators: Binter, Naysa, Canair Binter has 2 aircrafts, Naysa has 12 aircrafts, Canair has 4 aircrafts.
- crews of each operator are divided in 2 bases depending on the home island (TFN , LPA)

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Traditional optimization problems for airline companies are:

- Flight scheduling
- Fleet assignment
- Aircraft routing
- Crew pairing
- Crew rostering
- Aircraft rostering
- Disruption management

A D > A B > A B > A B >

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Traditional optimization problems for airline companies are:

- Flight scheduling
- Fleet assignment
- Aircraft routing
- Crew pairing
- Crew rostering
- Aircraft rostering
- Disruption management

Typically they are solved one after the other, in a sequence, for a large airline company.

イロト イボト イヨト イヨト

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Traditional optimization problems for airline companies are:

- Flight scheduling
- Fleet assignment
- Aircraft routing
- Crew pairing
- Crew rostering
- Aircraft rostering
- Disruption management

Typically they are solved one after the other, in a sequence, for a large airline company.

We solve the first 4 problems (related to a given day) in a **single integrated routing problem**, for our regional airline company, as follows:

イロト イボト イヨト イヨト

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Given a fixed day, our routing problem is

The customers are the flights (around 150), each defined by

- flight number; example: 104
- departure airport; example: TFN
- departure time; example: 07:30
- arrival airport; example: LPA
- arrival time; example: 08:00

イロト イボト イヨト イヨト

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Given a fixed day, our routing problem is

The customers are the flights (around 150), each defined by

- flight number; example: 104
- departure airport; example: TFN
- departure time; example: 07:30
- arrival airport; example: LPA
- arrival time; example: 08:00

The depots are the two special airports (bases): TFN & LPA

A = A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Given a fixed day, our routing problem is

The customers are the flights (around 150), each defined by

- flight number; example: 104
- departure airport; example: TFN
- departure time; example: 07:30
- arrival airport; example: LPA
- arrival time; example: 08:00

The depots are the two special airports (bases): TFN & LPA

The vehicles are: crews & aircrafts

A = A = A = A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Given a fixed day, our routing problem is

The customers are the flights (around 150), each defined by

- flight number; example: 104
- departure airport; example: TFN
- departure time; example: 07:30
- arrival airport; example: LPA
- arrival time; example: 08:00

The depots are the two special airports (bases): TFN & LPA

The vehicles are: crews & aircrafts

We will talk here about designing 2 type of routes:

- routes for crews
- routes for aircrafts

A = A = A = A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Requirements:

- Each crew must sleep in its base: TFN or LPA.
- Each aircraft must sleep alternatively inside and outside LPA.

A D > A B > A B > A B >

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Requirements:

- Each crew must sleep in its base: TFN or LPA.
- Each aircraft must sleep alternatively inside and outside LPA.

 \Rightarrow Aircraft Changes: some crews change from one aircraft to another aircraft

A D > A B > A B > A B >

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Requirements:

- Each crew must sleep in its base: TFN or LPA.
- Each aircraft must sleep alternatively inside and outside LPA.

 \Rightarrow Aircraft Changes: some crews change from one aircraft to another aircraft

A crew cannot operate more than 8 flights (per day) and cannot work more than 9 consecutive hours (per day)

(I)

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

- Airline Scheduling (aircraft routing, crew pairing)
 - Cordeau, Stojkovic, Soumis, Desrosiers (2001) in TS
 - Klabjan, Johnson, Nemhauser, Gelman, Ramaswamy (2002) in TS
 - Cohn, Barnhart (2003) in OR
 - Mercier, Cordeau, Soumis (2005) in C&OR
 - Mercier, Soumis (2007) in C&OR
 - Weide, Ryan, Ehrgott (2010) in C&OR
 - ...
- Vehicle Routing Problem with Time Windows
 - Bard, Kontoravdis, Yu (2002) in OR
 - Kallehauge, Boland, Madsen (2007) in N
 - Ropke, Cordeau, Laporte (2007) in N
 - Jepsen, Petersen, Spoorendonk, Pisinger (2008) in OR
 - Kallehauge (2008) in C&OR
 - ...

A = A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

2-depot driver-and-vehicle routing problem: arc model

 $V := V_d \cup V_c$ where $V_d := \{\mathsf{TFN}, \mathsf{LPA}\}$ and V_c are flights

 $x_{ij} = 1$ if and only if a crew will fly *j* immediately after *i* $y_{ij} = 1$ if and only if an aircraft will fly *j* immediately after *i* $z_{ii} = 1$ if and only if an "aircraft change" will occur from *i* to *j*

$$\min \sum_{i,j \in V_c} c_{ij} x_{ij} + \alpha \sum_{d \in V_d} x(\delta^+(d)) + \beta \sum_{d \in V_d} y(\delta^+(d)) + \gamma \sum_{i,j \in V_c} z_{ij}$$

$$x(\delta^+(i)) = x(\delta^-(i)) \quad \begin{bmatrix} = 1 \text{ if } i \in V_c \end{bmatrix} \quad \text{for all } i \in V \qquad (1)$$

$$x(A(S)) \leq |S| - 1 \qquad \text{for all } S \subseteq V_c \qquad (2)$$

$$x(d_1:S) + x(A(S)) + x(S:d_2) \leq |S| \quad \text{for all } S \subseteq V_c, \{d_1, d_2\} = V_d \qquad (3)$$

$$y(\delta^+(i)) = y(\delta^-(i)) \qquad \begin{bmatrix} = 1 \text{ if } i \in V_c \end{bmatrix} \quad \text{for all } i \in V \qquad (4)$$

$$y(A(S)) \leq |S| - 1 \qquad \text{for all } S \subseteq V_c, d \in V_d \qquad (5)$$

$$y(d:S) + y(A(S)) + y(S:d) \leq |S| \quad \text{for all } S \subseteq V_c, d \in V_d \qquad (6)$$

$$x_{ij} \leq y_{ij} + z_{ij} \qquad \text{for all } i, j \in V_c \qquad (7)$$

$$\text{"syncronization" between crew and aircraft} \qquad (8)$$

(日)

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Time-synchronization constraints

 t_i = elapsed time of serving customer *i* t_{ij} = elapsed time of moving a driver or vehicle from *i* to *j* T = time period (big-M) Example: t_i = 30 minutes, t_{ij} = 30 minutes, T = 16 hours.

 $w_i = [unknown]$ wall-clock time when customer *i* starts being served

For all $i, j \in V_c$:

$$w_{j} \ge w_{i} + (t_{i} + t_{ij})x_{ij} - (T - t_{i})(1 - x_{ij})$$

$$w_{j} \ge w_{i} + (t_{i} + t_{ij})y_{ij} - (T - t_{i})(1 - y_{ij})$$
(9)
(10)

A D F A B F A B F A B F

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

When flight departures are given, i.e. no schedule redesign

Customer *i* requires to start being served at a **precise** time.

A crew and aircraft can go from i to j only if

- the arrival airport of i is the departure airport of j
- the arrival time of $i(+t_{ij})$ is before the departure time of j

Then the underlying graph is asymmetric and acyclic.

On our real-world instances: about 150 nodes and about 1500 arcs.

and the exponential-number of SECs (2)–(3) and (5)–(6), and variables w_i are useless.

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

aircraft routing & crew pairing & little schedule redesign

When flight retiming are allowed to potentially have better (or feasible) routing solutions: Each flight is given with a proposal of departure time and with plus/minus a possible modification.

For example, flight *i* will departure at 09:15 within +10 or -10 minutes.

イロト イヨト イヨト

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

aircraft routing & crew pairing & little schedule redesign

When flight retiming are allowed to potentially have better (or feasible) routing solutions: Each flight is given with a proposal of departure time and with plus/minus a possible modification.

For example, flight i will departure at 09:15 within +10 or -10 minutes.

Then w_i is a necessary variable assuming values in $[e_i, l_i]$. In our case $l_i - e_i < t_{ij}$, thus the graph is *almost* acyclic. For each *i* and *j*, there is an arc (i, j) if $e_i + t_i + t_{ij} \leq l_j$, and

$$w_j \ge w_i + (t_i + t_{ij})x_{ij} + (e_j - l_i)(1 - x_{ij})$$

 $w_j \ge w_i + (t_i + t_{ij})y_{ij} + (e_j - l_i)(1 - y_{ij})$

Thus big-M values are not so problematic!

A = A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

aircraft routing & crew pairing & discrete retiming

When a flight has a set of 3 to 5 options for departure, we add a node to the graph representing each flight and each potential departure.

イロト イヨト イヨト

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

aircraft routing & crew pairing & discrete retiming

When a flight has a set of 3 to 5 options for departure, we add a node to the graph representing each flight and each potential departure.

- H.D. Sherali, K-H. Bae, and M. Haouari. An integrated approach for airline ight selection and timing, fleet assignment, and aircraft routing. Transportation Science, 47(4):455–476, 2013.
- R. van Lieshout, J. Mulder, and D. Huisman. The vehicle rescheduling problem with retiming. Computers & Operations Research, 96:131–140, 2018.
- V. Cacchiani, J-J. Salazar-González. Heuristic approaches for flight retiming in an integrated airline scheduling problem of a regional carrier. Omega (to appear) 2019.

イロト 不得 トイヨト イヨト

Master problem:

$$\min \sum_{k=1}^{m} \sum_{P \in \mathcal{P}^{k}} c_{P} x_{P} + \alpha \sum_{k=1}^{m} \sum_{P \in \mathcal{P}^{k}} x_{P} + \beta \sum_{h=1}^{r} \sum_{Q \in \mathcal{Q}^{h}} y_{Q} + \gamma \sum_{a \in A} z_{a},$$

$$\sum_{P \in \mathcal{P}^{k}} x_{P} \leq f^{k}, \quad k = 1, \dots, m,$$

$$\sum_{P \in \mathcal{P}^{k}}^{m} \sum_{P \in \mathcal{P}^{k}_{j}} x_{P} = 1, \quad j \in \mathbb{N}^{C},$$

$$\sum_{Q \in \mathcal{Q}^{h}} y_{Q} \leq g^{h}, \quad h = 1, \dots, r,$$

$$\sum_{h=1}^{r} \sum_{Q \in \mathcal{Q}^{h}_{j}} y_{Q} = 1, \quad j \in \mathbb{N}^{C},$$

$$\sum_{k=1}^{m} \sum_{P \in \mathcal{P}^{k}_{3}} x_{P} \leq \sum_{h=1}^{r} \sum_{Q \in \mathcal{Q}^{h}_{3}} y_{Q} + z_{a}, \quad a \in A,$$

$$x_{P} \in \{0, 1\}, \quad k = 1, \dots, r, \quad Q \in \mathcal{Q}^{h},$$

$$z_{a} \in \{0, 1\}, \quad a \in A.$$

SAC

æ.

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

2-depot driver-and-vehicle routing problem: path model

•••

Subproblem:

- Maximum-profit path *P* from airport σ_c^k to airport τ_c^k in (N, A) with node profits β_j for each j ∈ N^C and arc profits ψ_a for each a ∈ A, including at most 8 nodes and duration at most 9 hours.
- Maximum-profit path Q from airport σ_a^h to airport τ_a^h in (N, A) with node profits $\bar{\phi}_j$ for each $j \in N^C$ and arc profits $\bar{\psi}_a$ for each $a \in A$.

Both path problems can be solved by a dynamic-programming procedure.

A D > A B > A B > A B >

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

2-depot driver-and-vehicle routing problem: path model

• • •

Subproblem:

- Maximum-profit path P from airport σ_c^k to airport τ_c^k in (N, A) with node profits β_j for each j ∈ N^C and arc profits ψ_a for each a ∈ A, including at most 8 nodes and duration at most 9 hours.
- Maximum-profit path Q from airport σ_a^h to airport τ_a^h in (N, A) with node profits $\bar{\phi}_j$ for each $j \in N^C$ and arc profits $\bar{\psi}_a$ for each $a \in A$.

Both path problems can be solved by a dynamic-programming procedure.

Still, the best model uses path-variables for the crew aspect and arc-variables for the aircraft aspect.

A D > A B > A B > A B >

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Arc-path method (versus Path-path method)

Algorithm based on the model with path-variables for crews and arc-variables for aircrafts:

Step 1: Solve the linear-programming relaxation: LB

Step 2: Solve (<2 minute) the relaxation with integer variables: UB

Step 3: Generate all path-variables with reduce cost smaller than UB-LB

Step 4: Solve (<2 hour) the extended model with integer variables: OPT

Branch-and-cut framework: CPLEX 12.4

Computer: CORE i5-2400 3.10GHZ, 16GB RAM

A = A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Motivation: case study in air transport

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

		Path-path method					Arc-path method					
Inst.	#f	%Gap	T_{LB}	T_{UB}	BEST	T_{Tot}	%Gap	T_{LB}	T_{UB}	BEST	T _{Tot}	
1/9	102	0.45	42	120	22028	2868	0.09	31	22	22028	551	
2/9	140	-	218	120	28886	ΤL	0.07	148	13	27828	315	
3/9	130	-	132	120	25172	3228	0.02	108	5	25172	136	
4/9	124	-	101	120	24018	ΤL	0.08	73	120	24017	2088	
5/9	124	-	116	120	24122	ΤL	0.08	89	62	24121	664	
6/9	128	0.40	134	120	24796	ΤL	0.08	94	120	24796	1777	
7/9	150	-	286	120	28049	ΤL	0.08	255	120	27970	6589	
1/4	138	-	231	120	27288	TL	0.07	223	120	27287	7068	
2/4	132	-	150	120	28985	693	0.00	130	4	28985	134	
3/4	138	-	172	120	29266	1241	0.23	156	120	29266	286	
4/4	136	-	162	120	29101	724	0.00	188	6	29101	194	
5/4	144	-	207	120	29962	842	0.00	223	22	29962	245	
6/4	172	-	640	120	33103	1983	0.00	653	29	33103	682	
7/4	100	-	32	120	21300	TL	0.44	31	34	21300	498	

æ

Crew-and-aircraft routing Crew-and-aircraft rostering

		Path-path model				Arc-path model						
Inst.	#f	x _R lp	<i>y</i> _R lp	x _R bp	y _R bp	<i>x_R</i> lp	y_a lp	x _R gap	<i>y</i> _a gap	T_{X_R}	Ty_R	Ty_a
1/9	102	1259	1576	2337	7069	654	10128	537	3779	10838	1065025	10128
2/9	140	2195	2773	7592	19383	997	17609	1061	6130	34643	6603705	17609
3/9	130	1731	2229	3575	9203	839	16346	516	4206	30398	5989657	16346
4/9	124	1493	1995	5300	13592	754	15005	827	6281	23048	3843521	15005
5/9	124	1528	2142	5061	14712	811	14985	658	5361	22896	3848204	14985
6/9	128	1674	2274	4243	17123	785	15676	843	5679	25566	4570737	15676
7/9	150	2271	2848	6335	15515	1119	21511	1030	8434	60910	16501692	21511
1/4	138	2578	2873	24519	11349	1092	18892	1647	6882	73120	14196210	18892
2/4	132	1988	2329	2220	3115	908	19071	-	-	63804	18144693	19071
3/4	138	2006	2308	2611	4285	861	21095	5192	18606	84627	23753712	21095
4/4	136	2024	2396	2193	3079	957	20744	-	-	83098	23425413	20744
5/4	144	2190	2631	2317	3330	999	22903	-	-	102195	31424952	22903
6/4	172	3219	3695	3517	4824	1321	30473	-	-	207776		30473
7/4	100	1179	1370	4918	10504	709	10786	2563	9873	15411	1979296	10786
	イロト (部)、(言)、(言)、(言)、(言)、(言)、(言)、(言)、(言)、(言)、(言											

University of La Laguna, Tenerife

Motivation: case study in air transport

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

			Arc-pa	th met	hod					
Inst.	#f	#a	#c	#ch	Opt	#a	#c	#ch	Heu	%Gap
1/9	102	12	22	4	22028	14	24	8	24600	11.68
2/9	140	15	28	5	27828	17	28	7	29045	4.37
3/9	130	14	25	5	25172	15	26	6	26818	6.54
4/9	124	13	24	4	24017	13	25	5	25450	5.97
5/9	124	13	24	4	24121	14	25	4	25466	5.58
6/9	128	13	25	4	24796	13	26	4	26368	6.34
7/9	150	15	28	5	27970	15	30	5	30127	7.71
1/4	138	17	27	6	27287	17	28	7	29163	6.88
2/4	132	16	29	6	28985	16	31	6	31467	8.56
3/4	138	16	29	6	29266	16	31	6	32273	10.27
4/4	136	16	29	6	29101	16	35	6	35956	23.56
5/4	144	16	30	6	29962	16	31	6	31798	6.13
6/4	172	17	33	6	33103	17	36	8	36341	9.78
7/4	100	12	21	4	21300	11	24	4	24622	15.60

ъ

ъ

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

notation for crew-rostering

$${\it I}=$$
 set of crews ; ${\it J}=$ set of days ; ${\it K}=$ set of crew routes Input:

$$a_{ij} = \begin{cases} 1 & \text{if crew } i \text{ is available on day } j \\ 0 & \text{otherwise.} \end{cases}$$

 d_i = number of working days for crew j (e.g. 15 if he works 50% part time)

Output:

$$x_{ijk} = \begin{cases} 1 & \text{if crew } i \text{ flies in day } j \text{ following route } k \\ 0 & \text{otherwise.} \end{cases}$$
$$y_{ij} = \begin{cases} 1 & \text{if crew } i \text{ starts 3-day holidays in day } j \\ 0 & \text{otherwise.} \end{cases}$$
The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Other variables

- nM_i = number of morning routes for crew *i*
- nT_i = number of afternoon routes for crew *i*
- *ztime* = longest working time
 - zM = worst number of morning routes
 - zT = worst number of afternoon routes
- *zroutes* = worst number of (real and fictitious) routes
- *zimag* = worst number of fictitious routes
- *zpern* = worst number of non-cycle routes

イロト イボト イヨト イヨト

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

$$\min \alpha \cdot \textit{ztime} + \beta \cdot \textit{zM} + \gamma \cdot \textit{zT} + \delta \cdot \textit{zroutes} + \delta \cdot \textit{zimg} + \epsilon \cdot \textit{zpern}$$

$$\sum_{i} x_{ijk} = 1 \quad \text{for all } j, k$$

$$\sum_{k} x_{ijk} + y_{ij} + y_{i,j-1} + y_{i,j-2} \le a_{ij} \quad \text{for all } i, j$$

$$\sum_{j=F,S} y_{ij} = 1 \quad \text{for all } i$$

$$\sum_{k} x_{i,j-1,k} \ge y_{ij} \quad \text{for all } i, j$$

$$\sum_{k} x_{i,j+3,k} \ge y_{ij} \quad \text{for all } i, j$$

$$\sum_{k} \sum_{l=0}^{MaxD} x_{i,j+l,k} \le MaxD \quad \text{for all } i, j$$
...

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019

э

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

$$\sum_{k=K^{T}(j)} x_{ijk} + \sum_{k=K^{M}(j+1)} x_{i,j+1,k} \leq 1 \quad \text{for all } i,j$$

$$\sum_{k=K^{T}(j)} x_{ijk} + (1 - \sum_{k\in K(j+1)} x_{i,j+1,k}) + \sum_{k=K^{M}(j+2)} x_{i,j+2,k} \leq 2 \quad \text{for all } i,j$$

$$\sum_{k=0^{T}(j)} x_{ijk} + (1 - \sum_{k\in K(j+1)} x_{i,j+1,k}) + \sum_{k=0^{M}(j+2)} x_{i,j+2,k} \leq 2 \quad \text{for all } i,j$$

$$\sum_{j} \sum_{k} x_{ijk} \leq \sum_{j} a_{ij} - \frac{d_{i}}{dmax} \text{freeD} \quad \text{for all } i$$

$$\sum_{j} \sum_{k\in K^{M}(j)} x_{ijk} = nM_{i} \quad \text{for all } i$$

$$\sum_{j} \sum_{k\in K^{T}(j)} x_{ijk} = nT_{i} \quad \text{for all } i$$

▲ロト ▲御ト ▲臣ト ▲臣ト 三臣

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions

Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

$$maxDMT \le nM_i - nT_i \le maxDMT \qquad \text{for all } i$$

$$nM_i \le \frac{d_i}{dmax} zM \qquad \text{for all } i$$

$$nT_i \le \frac{d_i}{dmax} zT \qquad \text{for all } i$$

$$\sum_j \sum_k t_k \cdot x_{ijk} \le \frac{d_i}{dmax} z time \qquad \text{for all } i$$

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019

æ

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

Computational Results

I	K	nvars	ncons	LP	tLP	LB	UB	gap
7	96	904	1321	4969.0	0.3	4969.0	4970	0.02
10	177	2098	2547	6608.0	1.0	6608.0	6615	0.10
26	478	12254	14895	4683.7	18.7	4683.7	4770	1.84
18	300	4652	6004	3814.4	3.2	3814.4	3840	0.67
7	100	918	1323	4969.0	0.3	4969.0	4970	0.02
13	179	2738	3259	5084.0	1.4	5084.0	5100	0.31
23	487	10680	10000	5339.9	14.5	5339.9	5530	3.56
17	293	4326	5679	4066.4	3.0	4066.4	4085	0.46
16	126	2056	2896	4606.6	0.7	4606.6	4625	0.40
23	202	4815	5628	5873.7	1.7	5873.7	5935	1.04
47	619	20782	26542	5562.6	9.0	5562.6	5980	7.50
30	374	7688	9854	4766.2	4.5	4766.2	4890	2.60

SCIP 3.0 + Soplex 1.7, Intel Core Duo 2.17 Ghz, time limit =1 hour.

A = A = A

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions Need of optimization! Crew-and-aircraft routing Crew-and-aircraft rostering

P Visualizador	de turnos: N_A	bril_CMTE_LPA	.txt		100	-	1								L	
Martes 24/04/2012	Miercoles 25/04/2012	Jueves 26/04/2012	Memes 27/04/2012	Sabado 28/04/2012	Domingo 29/04/2012	Lunes 30/04/2012	Empleado	Operador	Tipo	Base	Con rutas reales	Con rutas imaginarias	Turno de mañana	Turno de tarde	Número de pernoctas	Días no asignados
1.1.1	T5		236	T5		100 A	ACP	N	CMTE	LPA	11	2	6	7	1	10
8538	8503	8200		135	8311		AMR	N	CMTE	LPA	15	1	8	8	2	11
107		107	8103	FS	FS	8214	ANA	N	CMTE	LPA	9	3	6	6	0	9
1.00	T6	171	T6	8145		167	APR	N	CMTE	LPA	10	4	6	8	0	13
1.00	135		8526	FS	FS	103	BLC	N	CMTE	LPA	15	2	8	9	1	13
T6	8512			510	8540	8503	CRR	N	CMTE	LPA	11	2	6	7	1	8
T5	8500			107	T5		DME	N	CMTE	LPA	10	6	8	8	0	13
1.1.1		236	512	FS	FS	8504	EAB	N	CMTE	LPA	15	1	9	7	1	14
8214		8538	8503	317			EAJ	N	CMTE	LPA	15	0	7	8	1	13
1.00	119	8165	8309	FS	FS	236	FDH	N	CMTE	LPA	8	3	5	6	0	11
518	8147	169	8540	501	8107		FGN	N	CMTE	LPA	12	2	7	7	1	11
1.1.1		101		590	8216	169	FMO	N	CMTE	LPA	10	1	5	6	0	12
8524	8538	8503	500	234			FSM	N	CMTE	LPA	15	1	7	9	2	14
V	W	VV	W	W	W	W	IVM	N	CMTE	LPA	10	2	6	6	0	10
100 A	GSS	T5	8506	FS	FS	8530	JBA	N	CMTE	LPA	12	2	6	8	1	14
8303				303			JRL	N	CMTE	LPA	13	3	8	8	1	14
8171				T6	T6	T6	JRP	N	CMTE	LPA	12	5	8	9	1	13
101	GSS	T6	224	FS	FS	107	JSM	N	CMTE	LPA	15	2	9	8	2	11
8503	8504		101	FS	FS	8538	JSN	N	CMTE	LPA	9	0	4	5	1,5	6
1.00	107			500		8303	JSP	N	CMTE	LPA	16	1	8	9	0	12
W	- VV	- VV	W	VV	- VV	W	MLG	N	CMTE	LPA	12	2	7	7	1	9
GSS	8236		T5		6100		OGF	N	CMTE	LPA	15	1	8	8	1	12
	167		8135	FS	FS	8200	PCM	N	CMTE	LPA	14	3	8	9	1	13
500	101	8518	311		8147		RAM	N	CMTE	LPA	17	1	9	9	1	12
1.00	GSS	214		224	169		RHV	N	CMTE	LPA	12	2	7	7	1	12
236	8200	GSS				T5	SRS	N	CMTE	LPA	15	2	9	8	2	11
		8303	8200	FS	FS	8147	VGS	N	CMTE	LPA	15	2	8	9	1	13
8212				8208	8226		RAN	N	CMTE	LPA	14	4	9	9	1	11
<																F.
													_	_		

æ

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

1 Motivation: case study in air transport

- Need of optimization!
- Crew-and-aircraft routing
- Crew-and-aircraft rostering

2 The Vehicle and Driver Scheduling Problem

- Examples of solution
- Problem formulation
- Valid inequalities & Cutting plane phase
- Computational results

3 The Driver and Vehicle Routing Problem

- Examples of solution
- Problem Formulation
- Valid Inequalities & Cutting plane phase
- Computational results

Figure: Instance n16-1-1-2-2a with 14 customers and 2 depots; at most 4 customers in a driver route; at most 7 customer in a vehicle route University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019

Examples of solution

Problem formulation Valid inequalities & Cutting plane phase Computational results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Figure: Optimal solution of n16-1-1-2-2a

Examples of solution

Problem formulation Valid inequalities & Cutting plane phase Computational results

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ◆ ○ ◆

Figure: Optimal solution of n32-1-1-4-4a

Examples of solution

Problem formulation Valid inequalities & Cutting plane phase Computational results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Figure: Optimal solution of n40-2-2-10-10a

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

Problem formulation

Notation:

- $V_c = \{1, \ldots, n\}$: set of *customers*. $V_d = \{0, n+1\}$: set of depots.
- $V = V_c \cup V_d$ vertices. $A = \{(i,j) : i, j \in V, i \neq j\}$ arcs. G = (V, A) a directed graph.

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

イロト イヨト イヨト

Problem formulation

Notation:

- $V_c = \{1, \ldots, n\}$: set of *customers*. $V_d = \{0, n+1\}$: set of depots.
- $V = V_c \cup V_d$ vertices. $A = \{(i,j) : i, j \in V, i \neq j\}$ arcs. G = (V, A) a directed graph.
- c_{ij}^k : the cost to pay when a vehicle of type k traverses an arc (i, j), for $k \in \{1, 2\}$.
- Q^k : the maximum number of customers that can be served by a vehicle of type k, for $k \in \{1, 2\}$.
- K_d^k : the number of vehicles of type k available at the depot d, for $k \in \{1, 2\}$.

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

・ロット (日) ・ (日) ・ (日) ・

Problem formulation

Notation:

- $V_c = \{1, \ldots, n\}$: set of *customers*. $V_d = \{0, n+1\}$: set of depots.
- $V = V_c \cup V_d$ vertices. $A = \{(i,j) : i, j \in V, i \neq j\}$ arcs. G = (V, A) a directed graph.
- c_{ij}^k : the cost to pay when a vehicle of type k traverses an arc (i, j), for $k \in \{1, 2\}$.
- Q^k : the maximum number of customers that can be served by a vehicle of type k, for $k \in \{1, 2\}$.
- K_d^k : the number of vehicles of type k available at the depot d, for $k \in \{1, 2\}$.
- For $S \subseteq V$: $\delta^+(S) := \{(i,j) \in A : i \in S, j \notin S\}$ and $A(S) := \{(i,j) \in A : i \in S, j \in S\}.$
- For $A' \subseteq A$: $x^k(A') = \sum_{(i,j)\in A'} x_{ij}^k$.

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

イロト 不得 トイヨト イヨト

Problem formulation

Variables:

- $x_{ij}^1 \in \{0,1\}$ takes value 1 iff a vehicle of type 1 (like crews) traverses arc $(i,j) \in A$.
- $x_{ij}^2 \in \{0,1\}$ takes value 1 iff a vehicle of type 2 (like vehicles) traverses arc $(i,j) \in A$.
- $y_{ij} \in \{0,1\}$ takes value 1 iff a vehicle-change happens at (i,j).

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

A D > A B > A B > A B >

Problem formulation

Variables:

- $x_{ij}^1 \in \{0,1\}$ takes value 1 iff a vehicle of type 1 (like crews) traverses arc $(i,j) \in A$.
- $x_{ij}^2 \in \{0,1\}$ takes value 1 iff a vehicle of type 2 (like vehicles) traverses arc $(i,j) \in A$.
- $y_{ij} \in \{0,1\}$ takes value 1 iff a vehicle-change happens at (i,j).
- z_i^k ≥ 0: the number of customers that a vehicle of type k has served immediately after serving customer i, with k ∈ {1,2}. (to control capacities)
- $w_i \ge 0$: the position in which customer *i* is served. (to control synchronization)

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

・ロト ・四ト ・ヨト ・ヨト

э

The problem can be modeled as follows:

$$\min \sum_{(i,j) \in A} c_{ij}^1 x_{ij}^1 + \sum_{(i,j) \in A} c_{ij}^2 x_{ij}^2 + N \sum_{i \in V_d, j \in V_c} x_{ij}^1 + M \sum_{(i,j) \in A} y_{ij}$$

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

The problem can be modeled as follows:

$$\min \sum_{(i,j)\in A} c_{ij}^1 x_{ij}^1 + \sum_{(i,j)\in A} c_{ij}^2 x_{ij}^2 + N \sum_{i\in V_d, j\in V_c} x_{ij}^1 + M \sum_{(i,j)\in A} y_{ij}$$

subject to:

$$\begin{array}{ll}
x^{1}(\delta^{+}(i)) = x^{1}(\delta^{-}(i)) = 1 & \forall i \in V_{c} \\
x^{1}(\delta^{+}(j)) = x^{1}(\delta^{-}(j)) \leq K_{j}^{1} & \forall j \in V_{d} \\
x^{1}(\delta^{+}(S)) \geq \sum_{i \in S} (x_{0,i}^{1} + x_{i,n+1}^{1}) & \forall S \subseteq V_{c} : S \neq \emptyset \\
x^{1}(\delta^{+}(S)) \geq \sum_{i \in S} (x_{n+1,i}^{1} + x_{i,0}^{1}) & \forall S \subseteq V_{c} : S \neq \emptyset \\
x^{1}(\delta^{+}(S)) \geq \sum_{i \in S} (x_{n+1,i}^{1} + x_{i,0}^{1}) & \forall S \subseteq V_{c} : S \neq \emptyset \\
x^{1}_{ij} \in \{0,1\} & \forall (i,j) \in A
\end{array}$$
(11)

・ロト ・四ト ・ヨト ・ヨト

э

X

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

$$x^{2}(\delta^{+}(i)) = x^{2}(\delta^{-}(i)) = 1 \qquad \forall i \in V_{c}$$

$$(15)$$

$$x^{-}(\delta^{+}(0)) = x^{-}(\delta^{-}(0)) \le K_{0}^{-}$$

$$x^{2}(\delta^{+}(n+1)) = x^{2}(\delta^{-}(0)) \le K_{n+1}^{2}$$
(17)

$$x^{2}(\delta^{+}(S)) \geq \sum_{i \in S} (x_{0,i}^{2} + x_{i,0}^{2}) \qquad \forall S \subseteq V_{c}; S \neq \emptyset$$
(18)

$$\mathbb{P}(\delta^+(S)) \ge \sum_{i \in S} (x_{n+1,i}^2 + x_{i,n+1}^2) \qquad \forall S \subseteq V_c; S \neq \emptyset$$
(19)

▲ロト ▲御ト ▲臣ト ▲臣ト 三臣

 $x_{ij}^2 \in \{0,1\}$ $orall (i,j) \in A$

x

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

$$x^{2}(\delta^{+}(i)) = x^{2}(\delta^{-}(i)) = 1 \qquad \forall i \in V_{c}$$

$$(15)$$

$$x^{2}(\delta^{+}(0)) = x^{2}(\delta^{-}(0)) \le K_{n+1}^{2}$$

$$(10)$$

$$x^{2}(\delta^{+}(n+1)) = x^{2}(\delta^{-}(0)) \le K_{n+1}^{2}$$

$$(17)$$

$$x^{2}(\delta^{+}(S)) \geq \sum_{i \in S} (x_{0,i}^{2} + x_{i,0}^{2}) \qquad \forall S \subseteq V_{c}; S \neq \emptyset$$
(18)

$$2(\delta^{+}(S)) \ge \sum_{i \in S} (x_{n+1,i}^{2} + x_{i,n+1}^{2}) \qquad \forall S \subseteq V_{c}; S \neq \emptyset$$

$$x_{ii}^{2} \in \{0,1\} \qquad \forall (i,j) \in A$$

$$(19)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○

$$z_{j}^{k} \ge z_{i}^{k} + x_{ij}^{k} - (Q^{k} - 1)(1 - x_{ij}^{k}) \qquad \forall (i,j) \in A; i,j \in V_{c}; k = 1, 2$$

$$w_{j} \ge w_{i} + x_{ij}^{k} - (n - 1)(1 - x_{ij}^{k}) \qquad \forall (i,j) \in A; i,j \in V_{c}; k = 1, 2$$

$$x_{ij}^{1} \le x_{ij}^{2} + y_{ij} \qquad \forall (i,j) \in A$$

$$y_{ij} \ge 0 \qquad \forall (i,j) \in A$$

$$w_{i} \ge 0 \qquad \forall i \in V_{c}$$

$$z_{i}^{k} \ge 0 \qquad \forall i \in V_{c}; k = 1, 2.$$

$$(20)$$

$$(21)$$

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

Note 1: same inequalities in different format (\geq versus \leq)

$$x^1(\delta^+(S)) \geq \sum_{i \in S} (x^1_{0,i} + x^1_{i,n+1}) \equiv$$

$$x^1(\delta^+(S)) \geq \sum_{i \in S} (x^1_{n+1,i} + x^1_{i,0}) \equiv$$

$$x^2(\delta^+(S)) \geq \sum_{i \in S} (x^2_{0,i} + x^2_{i,0}) \equiv$$

$$x^2(\delta^+(S)) \geq \sum_{i \in S} (x^2_{n+1,i} + x^2_{i,n+1}) \quad \equiv$$

$$x^{1}(0:S) + x^{1}(A(S)) + x^{1}(S:n+1) \leq |S|$$

$$x^{1}(n+1:S) + x^{1}(A(S)) + x^{1}(S:0) \leq |S|$$

$$x^{2}(0:S) + x^{2}(A(S)) + x^{2}(S:0) \leq |S|$$

$$x^{2}(n+1:S) + x^{2}(A(S)) + x^{2}(S:n+1) \leq |S|$$

э

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

Note 2: separating $x^1(\delta^+(S)) \ge \sum_{i \in S} (x^1_{0,i} + x^1_{i,n+1})$ for all $S \subseteq V_c$

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

A D > A B > A B > A B >

э.

Note 2: separating $x^1(\delta^+(S)) \ge \sum_{i \in S} (x^1_{0,i} + x^1_{i,n+1})$ for all $S \subseteq V_c$

They can be rewritten as

$$x^1(\delta^+(\mathcal{S})) + \sum_{i
otin \mathcal{S}} (x^1_{0,i} + x^1_{i,n+1}) \geq \sum_{i \in V_c} (x^1_{0,i} + x^1_{i,n+1}).$$

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

(a)

Note 2: separating $x^1(\delta^+(S)) \ge \sum_{i \in S} (x^1_{0,i} + x^1_{i,n+1})$ for all $S \subseteq V_c$

They can be rewritten as

$$x^1(\delta^+(S)) + \sum_{i \notin S} (x^1_{0,i} + x^1_{i,n+1}) \ge \sum_{i \in V_c} (x^1_{0,i} + x^1_{i,n+1}).$$

Given x^* , let us consider a support graph G' = (V', A') with $V' = V \cup \{s, t\}$, being s and t dummy nodes. The arc set A' is defined as follows:

- all the arcs $(i,j) \in A$ such that $x_{ij}^{1*} > 0$, each one with capacity x_{ij}^{1*} ,
- all arcs (s, i) with nodes $i \in V_c$, each one with capacity $x_{0,i}^{1*} + x_{i,n+1}^{1*}$, and
- the arcs (i, t) with nodes $i \in V_d$, each one with infinite capacity.

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

イロト イボト イヨト イヨト

Note 2: separating $x^1(\delta^+(S)) \ge \sum_{i \in S} (x^1_{0,i} + x^1_{i,n+1})$ for all $S \subseteq V_c$

They can be rewritten as

$$x^1(\delta^+(S)) + \sum_{i \notin S} (x^1_{0,i} + x^1_{i,n+1}) \ge \sum_{i \in V_c} (x^1_{0,i} + x^1_{i,n+1}).$$

Given x^* , let us consider a support graph G' = (V', A') with $V' = V \cup \{s, t\}$, being s and t dummy nodes. The arc set A' is defined as follows:

- all the arcs $(i,j) \in A$ such that $x_{ij}^{1*} > 0$, each one with capacity x_{ij}^{1*} ,
- all arcs (s, i) with nodes $i \in V_c$, each one with capacity $x_{0,i}^{1*} + x_{i,n+1}^{1*}$, and
- the arcs (i, t) with nodes $i \in V_d$, each one with infinite capacity.

Let $S \subset V'$ be the solution of the min-cut problem separating s from t, $s \in S$, in G'.

Examples of solution **Problem formulation** Valid inequalities & Cutting plane phase Computational results

Note 2: separating $x^1(\delta^+(S)) \ge \sum_{i \in S} (x^1_{0,i} + x^1_{i,n+1})$ for all $S \subseteq V_c$

They can be rewritten as

$$x^1(\delta^+(S)) + \sum_{i \notin S} (x^1_{0,i} + x^1_{i,n+1}) \ge \sum_{i \in V_c} (x^1_{0,i} + x^1_{i,n+1}).$$

Given x^* , let us consider a support graph G' = (V', A') with $V' = V \cup \{s, t\}$, being s and t dummy nodes. The arc set A' is defined as follows:

- all the arcs $(i,j) \in A$ such that $x_{ij}^{1*} > 0$, each one with capacity x_{ij}^{1*} ,
- all arcs (s, i) with nodes $i \in V_c$, each one with capacity $x_{0,i}^{1*} + x_{i,n+1}^{1*}$, and
- the arcs (i, t) with nodes $i \in V_d$, each one with infinite capacity.

Let $S \subset V'$ be the solution of the min-cut problem separating s from t, $s \in S$, in G'.

If the capacity of the arcs leaving S on G' is smaller than $\sum_{i \in V_c} (x_{0,i}^{1*} + x_{i,n+1}^{1*})$ then S defines a violated inequality (13) that must be added to the current linear program.

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

Valid inequalities

Subtour elimination inequalities

$$\mathbf{x}^k(\delta^+(\mathcal{S})) \geq 1, orall \mathcal{S} \subseteq V_c, \mathcal{S}
eq \emptyset, k \in V_d$$

(23)

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

Valid inequalities

Subtour elimination inequalities

$$(x^k(\delta^+(\mathcal{S})) \geq 1, orall \mathcal{S} \subseteq V_c, \mathcal{S}
eq \emptyset, k \in V_d)$$

(24)

(25)

A D F A B F A B F A B F

Capacity inequalities

Fractional capacity constraints

$$x^k(\delta^+(\mathcal{S})) \geq |\mathcal{S}|/Q^k, orall \mathcal{S} \subseteq V_c: \mathcal{S}
eq \emptyset; k=1,2$$

Rounded capacity constraints

$$X^k(\delta^+(\mathcal{S})) \geq \lceil |\mathcal{S}|/Q^k
ceil, orall \mathcal{S} \subseteq V_c: \mathcal{S}
eq \emptyset; k=1,2$$

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

(26)

э.

A D > A B > A B > A B >

Multistar Inequalities (Gouveia, L., 1993)

 $x^k(\delta^+(S)) \geq rac{1}{Q^k}(|S| + \sum_{i \in S} \sum_{j
otin S} (x^k_{ij} + x^k_{ji})), orall S \subseteq V_c, S
ot = \emptyset, k = 1, 2$

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

(26)

э

Multistar Inequalities (Gouveia, L., 1993)

$$x^k(\delta^+(\mathcal{S})) \geq rac{1}{Q^k}(|\mathcal{S}| + \sum_{i \in \mathcal{S}} \sum_{j
otin \mathcal{S}} (x^k_{ij} + x^k_{ji})), orall \mathcal{S} \subseteq V_c, \mathcal{S}
eq \emptyset, k = 1, 2$$

D_p Inequalities (Grötschel, M. and Padberg, M. W., 1985)

Let $S = \{i_1, \ldots, i_p\} \subset V$ and a vehicle type k. Then, the D_p^- and D_p^+ inequality are given, respectively, by:

$$\sum_{j=1}^{p-1} x_{i_{j},i_{j+1}}^{k} + x_{i_{p},i_{1}}^{k} + 2\sum_{j=3}^{p} x_{i_{1},i_{j}}^{k} + \sum_{j=4}^{p-1} \sum_{l=3}^{j-1} x_{i_{j},i_{l}}^{k} \le p-1$$

$$\sum_{j=1}^{p-1} x_{i_{j},i_{j+1}}^{k} + x_{i_{p},i_{1}}^{k} + 2\sum_{j=2}^{p-1} x_{i_{j},i_{1}}^{k} + \sum_{j=3}^{p-1} \sum_{l=2}^{j-1} x_{i_{j},i_{l}}^{k} \le p-1$$
(27)
$$(27)$$

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

Strengthened Comb Inequalities (Lysgaard, J. et al., 2003)

 $H \subset V_c$, $T_1, \ldots, T_t \subset V_c, t \geq 2$ such that:

•
$$T_i \setminus H \neq \emptyset$$
 and $H \cap T_i \neq \emptyset$ for $i = 1, ..., t$;

• for each $\{i,j\} \subset \{1,\ldots,t\}$: $T_i \cap T_j \subset H$ or $T_i \cap T_j \cap H = \emptyset$.

 $\forall S \subset V, \ \tilde{r}^k(S) \text{ equal to } \lceil d^k(S)/Q^k \rceil \text{ if } S \subset V_c, \text{ and to } \lceil d^k(V_c \setminus S)/Q^k \rceil \text{ otherwise.}$

$$S(H, T_1, \ldots, T_t) := \sum_{j=1}^t (\tilde{r}^k(T_j) + \tilde{r}^k(T_j \cap H) + \tilde{r}^k(T_j \setminus H))$$

If this quantity is odd, we consider that

$$x^{k}(\delta(H)) + \sum_{j=1}^{t} x^{k}(\delta(T_{j})) \ge S(H, T_{1}, \dots, T_{t}) + 1$$
 (29)

A = A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

is a strengthened comb inequality.

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

イロト 不得 トイヨト イヨト

Cutting plane phase

- Step 1: Look for violated constraints (22).
- Step 2: Find violated constraints (26) (exact separation procedure) and (25) (heuristic separation procedure).
- Step 3: Apply a heuristic procedure to separate the inequalities (27) and (28).
- Step 4: Detect violated inequalities (13)–(14) and (18)–(19).
- Step 5: Look for violated inequalities (29).

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

Computational results

- Computer with Intel Core i3 CPU at 3.4 GHz and Cplex 12.6
- VRP instances have been properly adapted to suit our problem.
 - $n+2 \in \{16, 20, 32, 40, 50\}.$
 - arc costs c_{ij} represent the Euclidean distance between the tasks (i, j).
 - Different values for M and N.
 - Time limit (T.L.) = 2h
- We created 69 instances of three classes:
 - Class a (small capacity):

$$Q^{k} = \left\lceil \frac{n}{K_{0}^{k} + K_{n+1}^{k}} \right\rceil$$

• Class b (medium capacity):

$$Q^{k} = \left\lceil \left(\left\lceil \frac{n}{K_{0}^{k} + K_{n+1}^{k}} \right\rceil + (n+2) \right) / 3 \right\rceil$$

• Class c (large capacity):

A D > A B > A B > A B >

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem

Conclusions

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

	M =	100,	Ν	= 1	0				Alg 1 (z variables)								Alg 2 (capacity constraints)								
name	n + 2	$2 Q^2$	Q^1	K_0^2	K_{n+1}^{2}	K_0^1	K_{n+1}^1	route	ху	gap	r-time	time	nodes	cuts	route	ху	gap	r-time	time	nodes	cuts				
n16-1-1-2-2a	16	7	4	1	1	2	2	486	40	19.58	0.16	2279.52	64806	2084	486	40	10.09	0.09	64.23	3633	1053				
n16-1-1-2-2b	16	8	7	1	1	2	2	443	20	8.64	0.14	10.53	914	302	443	20	7.78	0.06	2.89	275	343				
n16-1-1-2-2c	16	16	16	1	1	2	2	411	20	1.86	0.12	0.19	4	121	411	20	2.47	0.08	0.12	4	126				
n16-1-1-1a	16	7	7	1	1	1	1	447	20	9.21	0.14	13.92	1250	330	447	20	8.35	0.12	6.26	512	539				
n16-1-1-1-1b	16	8	8	1	1	1	1	445	20	8.82	0.19	10.83	1040	325	445	20	8.44	0.14	7.00	530	688				
n16-1-1-1-1c	16	16	16	1	1	1	1	411	20	1.62	0.20	0.25	4	126	411	20	2.23	0.08	0.14	8	131				
n16-2-2-1-1a	16	4	7	2	2	1	1	507	22	8.73	0.14	250.65	16933	752	507	22	7.42	0.14	179.96	7923	1559				
n16-2-2-1-1b	16	7	8	2	2	1	1	481	22	6.32	0.11	18.94	2223	382	481	22	5.94	0.12	11.90	1423	618				
n16-2-2-1-1c	16	16	16	2	2	1	1	454	22	2.63	0.11	0.27	32	216	454	22	2.63	0.12	0.39	70	233				
n16-2-2-4-4a	16	4	2	2	2	4	4	626	70	25.72	0.19	1266.24	32829	1762	626	70	7.69	0.25	131.34	6084	1276				
n16-2-2-4-4b	16	7	6	2	2	4	4	497	40	3.72	0.19	3.00	269	261	497	40	5.06	0.25	2.39	228	349				
n16-2-2-4-4c	16	16	16	2	2	4	4	484	40	3.63	0.31	0.50	20	192	484	40	3.62	0.20	0.34	25	207				
n20-1-1-2-3a	20	9	4	1	1	2	3	675	51	41.09	0.11	T.L.	32379	7530	678	51	30.25	0.30	T.L.	20808	11061				
n20-1-1-2-3b	20	10	8	1	1	2	3	531	30	13.50	0.14	5020.60	67709	3010	531	30	12.12	0.19	1238.29	16878	3301				
n20-1-1-2-3c	20	20	20	1	1	2	3	503	20	7,07	0.11	4.27	204	343	503	20	8.14	0.12	4.99	377	471				
n20-1-1-3-3a	20	9	3	1	1	3	3	666	60	33.06	0.11	T.L.	37032	5482	652	60	11.42	0.30	T.L.	38704	6033				
n20-1-1-3-3b	20	10	8	1	1	3	3	531	30	13.50	0.17	4056.32	59987	2776	531	30	12.12	0.19	2124.20	21108	4192				
n20-1-1-3-3c	20	20	20	1	1	3	3	503	20	7.07	0.11	3.99	193	343	503	20	8.14	0.12	6.55	506	537				
n20-2-2-5-5a	20	5	2	2	2	5	5	860	LO 0	40.10	0.20	T.L.	25832	6582	861	10 0	16.19	0.47	T.L.	25228	8905				
n20-2-2-5-5b	20	9	8	2	2	5	5	589	40	8.59	0.17	191.91	7088	780	589	40	9.10	0.30	202.27	6168	1333				
n20-2-2-5-5c	20	20	20	2	2	5	5	554	40	5.74	0.19	2.65	150	307	554	40	5.60	0.16	2.68	214	370				
n20-5-5-2-2a	20	2	5	5	5	2	2	939	46	11.22	0.27	T.L.	71429	2346	951	46	7.17	1.01	T.L.	23951	7107				
n20-5-5-2-2b	20	8	9	5	5	2	2	787	46	3.05	0.22	21.98	1735	466	787	46	1.62	0.25	8.99	917	576				
n20-5-5-2-2c	20	20	20	5	5	2	2	771	4 6	1.74	0.20	1.34	94	374	771	4 6	0.92	0.30	0.62	42	377				

University of La Laguna, Tenerife

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem

Conclusions

Examples of solution Problem formulation Valid inequalities & Cutting plane phase Computational results

Alg	3 (all	valic	l ine	qua	lities)					<i>M</i> =	= 100,	N = 10		M = 10, N = 1							
name	n + 2	Q^2	Q^1	K_0^2	K_{n+1}^{2}	K_0^1	K_{n+1}^1	route	ху	gap	r-time	time	nodes	cuts	route	ху	gap	r-time	time	nodes	cuts
n16-1-1-2-2a	16	7	4	1	1	2	2	486	4 0	3.92	0.16	0.87	69	443	486	4 0	2.03	0.19	0.95	50	235
n16-1-1-2-2b	16	8	7	1	1	2	2	443	20	3.56	0.09	0.73	51	358	443	20	3.71	0.11	1.06	80	463
n16-1-1-2-2c	16	16	16	1	1	2	2	411	20	0.46	0.17	0.19	4	136	397	$1 \ 1$	0.25	0.09	0.09	3	93
n16-1-1-1a	16	7	7	1	1	1	1	447	20	3.21	0.19	2.95	136	1016	447	20	3.34	0.16	2.43	140	598
n16-1-1-1-1b	16	8	8	1	1	1	1	445	20	3.87	0.06	1.19	98	396	445	20	6.04	0.06	2.43	169	652
n16-1-1-1-1c	16	16	16	1	1	1	1	411	20	0.23	0.20	0.22	3	137	397	$1 \ 1$	0.25	0.11	0.12	3	89
n16-2-2-1-1a	16	4	7	2	2	1	1	507	22	2.96	0.16	2.98	174	870	507	22	3.69	0.39	2.87	143	418
n16-2-2-1-1b	16	7	8	2	2	1	1	481	22	2.50	0.08	0.66	78	383	481	22	5.17	0.06	2.04	168	668
n16-2-2-1-1c	16	16	16	2	2	1	1	454	22	0.67	0.09	0.11	4	224	440	13	0.21	0.08	0.11	4	103
n16-2-2-4-4a	16	4	2	2	2	4	4	626	70	0.44	0.41	0.58	12	273	626	70	0.57	0.20	0.73	33	190
n16-2-2-4-4b	16	7	6	2	2	4	4	497	4 0	3.72	0.16	0.62	47	449	484	31	2.11	0.11	1.03	49	323
n16-2-2-4-4c	16	16	16	2	2	4	4	484	4 0	1.34	0.20	0.31	18	232	440	13	0.21	0.12	0.12	3	97
n20-1-1-2-3a	20	9	4	1	1	2	3	624	51	16.37	0.69	T.L.	20324	10269	613	51	5.39	0.78	37.39	982	917
n20-1-1-2-3b	20	10	8	1	1	2	3	531	30	4.46	0.33	9.81	392	792	529	4 0	4.80	0.42	7.24	317	544
n20-1-1-2-3c	20	20	20	1	1	2	3	503	20	7.07	0.11	3.88	225	555	466	$1 \ 1$	1.89	0.09	0.16	6	61
n20-1-1-3-3a	20	9	3	1	1	3	3	651	60	1.84	0.75	4.56	124	561	651	60	2.44	0.45	1.84	61	328
n20-1-1-3-3b	20	10	8	1	1	3	3	531	30	4.46	0.33	6.22	252	883	529	4 0	5.16	0.27	15.02	590	998
n20-1-1-3-3c	20	20	20	1	1	3	3	503	20	7.07	0.14	3.90	225	555	466	$1 \ 1$	1.89	0.08	0.14	6	61
n20-2-2-5-5a	20	5	2	2	2	5	5	821	10 0	4.23	0.78	140.24	3679	1292	803	10 1	2.83	0.69	17.10	595	544
n20-2-2-5-5b	20	9	8	2	2	5	5	589	4 0	3.97	0.41	7.35	291	1084	572	31	2.91	0.31	2.22	113	418
n20-2-2-5-5c	20	20	20	2	2	5	5	554	4 0	3.20	0.20	0.87	47	304	529	31	0.55	0.17	0.20	4	207
n20-5-5-2-2a	20	2	5	5	5	2	2	927	4 6	1.24	1.61	36.16	781	1181	907	47	1.16	1.83	11.37	264	810
n20-5-5-2-2b	20	8	9	5	5	2	2	787	4 6	0.88	0.33	1.42	89	531	777	37	1.53	0.28	2.37	120	563
n20-5-5-2-2c	20	20	20	5	5	2	2	771	4 6	0.35	0.39	0.51	16	427	761	3 7	0.48	0.20	0.28	11	213

University of La Laguna, Tenerife

									M = 100, N = 10									M = 10, N = 1								
name	n+2	$2 Q^2$	Q^1	K_{0}^{2} [K_{n+1}^{2}	K_0^1	K_{n+1}^1	route	x	y	gap	r-time	time	e nodes	cuts	route	х	y	gap	r-time	time	nodes	cuts			
n32-1-1-4-4a	32	15	4	1	1	4	4	1566	8	0	4.27	5.54	T.L	25290	4489	1534	8	1	3.39	4.96	491.48	3958	2111			
n32-1-1-4-4b	32	16	12	1	1	4	4	1155	4	0	8.10	6.86	T.L	18266	13555	1098	3	2	3.28	5.29	416.10	4002	2389			
n32-1-1-4-4c	32	32	32	1	1	4	4	979	2	0	4.7	2.06	73.68	1081	1616	913	1	1	0.00	1.73	1.73	1	535			
n32-2-2-1-1a	32	8	15	2	2	1	1	1269	2	2	3.80	10.51	1540.79	4907	9962	1216	2	6	4.29	4.27	1183.05	10214	2510			
n32-2-2-1-1b	32	14	16	2	2	1	1	1170	2	2	1.97	15.68	197.86	5 1374	2612	1149	2	3	1.86	6.10	144.68	1342	3556			
n32-2-2-1-1c	32	32	32	2	2	1	1	1053	2	2	0.00	6.40	6.40) 1	1065	1038	1	3	0.00	1.87	1.89	1	521			
n32-2-2-5-5a	32	8	3	2	2	5	5	1970	10	21	L1.06	10.75	T.L	16075	5803	1920	10	4	2.45	10.02	974.30	6729	1955			
n32-2-2-5-5b	32	14	12	2	2	5	5	1281	4	0	6.60	8.85	3592.36	16702	7943	1203	3	4	3.47	4.02	700.27	6506	3271			
n32-2-2-5-5c	32	32	32	2	2	5	5	1139	4	0	2.63	2.01	15.71	. 283	1017	1038	1	3	0.16	2.42	3.06	11	585			
n40-2-2-10-10a	40	10	2	2	2	10	10	1374	19	0	1.19	14.38	1512.37	6498	3457	1374	19	0	1.48	15.62	1343.12	6508	2789			
n40-2-2-10-10b	40	17	14	2	2	10	10	824	4	0	6.57	7.97	T.L	11663	12594	769	3	3	3.67	7.96	4915.97	21148	8594			
n40-2-2-10-10c	40	40	40	2	2	10	10	791	4	0	3.43	8.08	2754.65	512835	4813	748	2	2	0.65	4.17	17.05	188	880			
n40-4-4-4-4a	40	5	5	4	4	4	4	1203	8	0	9.57	29.80	T.L	. 9192	7810	1252	8	41	15.73	41.93	T.L.	10533	7921			
n40-4-4-4-4b	40	15	15	4	4	4	4	946	8	0	3.75	22.89	T.L	8847	14005	902	6	2	2.37	7.16	1522.34	6769	7199			
n40-4-4-4-4c	40	40	40	4	4	4	4	938	8	0	3.00	19.69	5840.10	16343	4519	849	3	5	0.17	6.35	7.47	8	752			
n40-10-10-2-2a	40	2	10	10	10	2	2	1560	41	6	0.34	81.26	1242.30	2581	3471	1560	41	.6	0.59	63.99	1067.11	2822	3503			
n40-10-10-2-2b	40	14	17	10	10	2	2	1326	41	6	0.37	19.02	590.00) 2172	4282	1326	41	.6	0.83	13.03	457.77	3158	3389			
n40-10-10-2-2c	40	40	40	10	10	2	2	1310	41	6	0.10	11.72	12.53	6 6	1828	1299	31	.7	0.07	6.32	7.22	10	708			
n50-6-6-2-2a	50	4	12	6	6	2	2	1464	4	8	8.93	204.42	T.L	. 3766	7773	1343	4	8	6.03	116.22	T.L.	6328	9525			
n50-6-6-2-2b	50	18	21	6	6	2	2	1077	4	8	0.49	36.99	918.38	3 1521	5318	1077	4	8	0.81	41.11	429.24	1575	4648			
n50-6-6-2-2c	50	50	50	6	6	2	2	1065	4	8	0.03	18.63	19.44	11	2699	1065	4	8	0.09	15.32	16.89	9	941			
n50-8-8-2-2a	50	3	12	8	8	2	2	1643	41	2	6.18	311.30	T.L	. 3286	10281	1578	41	.81	10.08	210.60	T.L.	6423	10364			
n50-8-8-2-2b	50	18	21	8	8	2	2	1214	41	2	0.41	29.33	715.12	2 1333	5389	1214	41	.2	0.75	29.05	219.31	1050	2429			
n50-8-8-2-2c	50	50	50	8	8	2	2	1202	41	2	0.04	28.20	38.58	39	3330	1202	41	2	0.08	23.40	27.02	22	1360			
n50-8-8-8-8a	50	3	3	8	8	8	8	1958	16	0	2.85	308.82	T.L	. 4315	6957	1930	16	0	3.83	149.85	T.L.	8803	4218			
n50-8-8-8-8b	50	18	18	8	8	8	8	1420	16	0	2.03	46.24	6275.34	10041	5821	1238	71	.0	1.34	21.04	1515.88	4889	7362			
n50-8-8-8-8c	50	50	50	8	8	8	8	1415	16	0	1.71	29.76	1451.36	3909	3556	1219	61	.0	0.08	22.59	25.80	14	1203			
Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

A D F A B F A B F A B F

1 Motivation: case study in air transport

- Need of optimization!
- Crew-and-aircraft routing
- Crew-and-aircraft rostering

2 The Vehicle and Driver Scheduling Problem

- Examples of solution
- Problem formulation
- Valid inequalities & Cutting plane phase
- Computational results

3 The Driver and Vehicle Routing Problem

- Examples of solution
- Problem Formulation
- Valid Inequalities & Cutting plane phase
- Computational results

Examples of solution

Problem Formulation Valid Inequalities & Cutting plane phase Computational results

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

5

Examples of solution

Problem Formulation Valid Inequalities & Cutting plane phase Computational results

Figure: Solution examples of the instance n10-2 with T = 5 and $|V_e| = 1$

Examples of solution

Problem Formulation Valid Inequalities & Cutting plane phase Computational results

Figure: Solution examples of the instance n20-4 with T = 7 and $|V_e| = 1$

Examples of solution

Problem Formulation Valid Inequalities & Cutting plane phase Computational results

Figure: Solution examples of the instance n20-5 with T = 5 and $|V_e| = 4$

Examples of solution **Problem Formulation** Valid Inequalities & Cutting plane phase Computational results

・ロット (日) ・ (日) ・ (日) ・

Problem Formulation

Notation:

Given:

- $V_d = \{0, n+1\}$: set of depots. $V_c = \{1, ..., n\}$: set of customer locations.
 - $V_c = V_r \cup V_e$. V_r : set of *regular* customer locations. V_e : set of *exchange* locations.
- V = V_d ∪ V_r ∪ V_e: the vertex set. A = {(i,j) : i, j ∈ V, i ≠ j}: set of potential arcs. G = (V, A) is a directed graph.
- c_{ij} : cost to pay when a driver traverses an arc (i, j).
- K_d : set of drivers available at each depot $d \in D$. In total $K = \sum_{d \in D} K_d$ drivers.
- L_d : set of vehicles available at each depot $d \in D$. In total $L = \sum_{d \in D} L_d$ vehicles.
- t_{ij} : time a pair vehicle-driver spends to traverse an arc (i, j).
- T: maximum time that a driver can spend performing a single route.

Examples of solution **Problem Formulation** Valid Inequalities & Cutting plane phase Computational results

A D > A B > A B > A B >

Problem formulation

Variables:

- x_{ij}^k takes value 1 if the driver $k \in K$ traverses the arc $(i, j) \in A$, and 0 otherwise.
- y_{ij}^d represents the number of vehicles that start their routes from depot d and traverse an arc $(i,j) \in A$.
- u_i^k takes value 1 if the driver $k \in K$ visits the customer *i*, and 0 otherwise.
- v_i^d represents the number of vehicles originating from depot $d \in D$ and visiting customer *i*.
- w_i represents the (ordered) position in which customer *i* is served.

Examples of solution **Problem Formulation** Valid Inequalities & Cutting plane phase Computational results

The DVRP can be modeled as follows:

$$\min \sum_{k \in \mathcal{K}} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}^k \tag{30}$$

subject to:

$x^{\kappa}(\delta^+(i)) = x^{\kappa}(\delta^-(i)) = u_i^{\kappa}$	$i \in V_c, k \in K$	(31)
$\sum_{k\in \mathcal{K}} u_i^k \geq 1$	$i \in V_c$	(32)
$x^{k}(\delta^{+}(n+1)) = x^{k}(\delta^{-}(n+1)) = 0$	$k \in K_0$	(33)
$x^k(\delta^+(0)) = x^k(\delta^-(0)) = 0$	$k\in \mathcal{K}_{n+1}$	(34)
$\sum_{(i,i) \in A} t_{ij} x_{ij}^k \leq T$	$k \in K$	(35)
$(i,j) \in A$ $w_i \ge w_i \pm x^k - (n-1)(1-x^k)$	kek (i i) e A i i e V	(36)
$w_j \geq w_i + \lambda_{ij} - (n-1)(1 - \lambda_{ij})$ $w_i > 0$	$i \in V_c$	(37)
$x_{ii}^k \in \{0,1\}$	$k \in K, (i, j) \in A$	(38)
$u_i^k \in \{0,1\}$	$i \in V, k \in K.$	(39)
	◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □	

The Vehicle and Driver Scheduling Problem The Driver and Vehicle Routing Problem Conclusions

Problem Formulation

$$y^{d}(\delta^{+}(i)) = y^{d}(\delta^{-}(i)) = v_{i}^{d} \qquad i \in V_{c}, d \in D \qquad (40)$$

$$\sum_{d \in D} v_{i}^{d} = 1 \qquad i \in V_{r} \qquad (41)$$

$$\sum_{d \in D} v_{i}^{d} \ge 1 \qquad i \in V_{e} \qquad (42)$$

$$y^{0}(\delta^{+}(n+1)) = y^{0}(\delta^{-}(0)) = 0 \qquad (43)$$

$$y^{n+1}(\delta^{+}(0)) = y^{n+1}(\delta^{-}(n+1)) = 0 \qquad (44)$$

$$1 \le y^{0}(\delta^{+}(0)) = y^{0}(\delta^{-}(n+1)) \le |L_{0}| \qquad (45)$$

$$1 \le y^{n+1}(\delta^{+}(n+1)) = y^{n+1}(\delta^{-}(0)) \le |L_{n+1}| \qquad (46)$$

$$w_{j} \ge w_{i} + y_{ij}^{d} - (n-1)(1 - y_{ij}^{d}) \qquad d \in D, (i,j) \in A : i, j \in V_{c} \qquad (47)$$

$$y_{ij}^{d} \ge 0 \qquad i \in V_{c}, d \in D. \qquad (49)$$

$$b \qquad \qquad a \in D, (i, j) \in A \qquad (48)$$

$$b \qquad \qquad i \in V_c, d \in D. \qquad (49)$$

▲口→ ▲御→ ▲注→ ▲注→ 「注

Motivation:	case stu	ly in air	transport
The Vehicle and	Driver Sc	heduling	Problem
The Driver an	d Vehicle	Routing	Problem
		Co	nclusions

 v^d

 $y^0(\delta^+$

 $1 \le y^0(\delta^+(0)) = y^0(\delta^-(n+1))$

Problem Formulation

$$y^{d}(\delta^{+}(i)) = y^{d}(\delta^{-}(i)) = v_{i}^{d} \qquad i \in V_{c}, d \in D$$
(40)
$$\sum_{d \in D} v_{i}^{d} = 1 \qquad i \in V_{r}$$
(41)
$$\sum_{d \in D} v_{i}^{d} \ge 1 \qquad i \in V_{e}$$
(42)
$$y^{0}(\delta^{+}(n+1)) = y^{0}(\delta^{-}(0)) = 0$$
(43)
$$y^{n+1}(\delta^{+}(0)) = y^{n+1}(\delta^{-}(n+1)) = 0$$
(44)

$$1 \le y^{0}(\delta^{+}(0)) = y^{0}(\delta^{-}(n+1)) \le |L_{0}|$$

$$1 \le y^{n+1}(\delta^{+}(n+1)) = y^{n+1}(\delta^{-}(0)) \le |L_{n+1}|$$
(45)
(46)

$$d \in D, (i,j) \in A : i,j \in V_c$$

$$d \in D, (i,i) \in A$$
(47)
(47)

$$0 d \in D, (i, j) \in A (48)$$
$$0 i \in V_c, d \in D. (49)$$

$$y_{j} \ge w_i + y_{ij}$$
 $(n-1)(1-y_{ij})$
 $y_{ij}^d \ge 0$
 $v_i^d \ge 0$

 $w_i \ge w_i + v_i^d - (n-1)(1-v_i^d)$

 $\sum_{k \in K} x_{ij}^k \ge \sum_{d \in D} y_{ij}^d$

 $x_{ij}^k \leq \sum y_{ij}^d$

iisalaza@ull.es

$$k \in K, (i,j) \in A. \tag{51}$$

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

(52)

Valid Inequalities

One-driver constraints

$$\sum_{k\in \mathcal{K}_d} x^k(\delta^+(d)) \geq 1 \qquad \qquad d\in D$$

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

(52)

A D F A B F A B F A B F

Valid Inequalities

One-driver constraints

$$\sum_{k\in \mathcal{K}_d} x^k(\delta^+(d)) \geq 1 \qquad \qquad d\in D$$

Symmetry-breaking constraints

$$x^{k}(\delta^{+}(d)) \ge x^{k+1}(\delta^{+}(d))$$
 $d \in D, K_{d} = \{1, \dots, m\}, k = 1, \dots, m-1$ (53)

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

(52)

A D F A B F A B F A B F

Valid Inequalities

One-driver constraints

$$\sum_{k\in \mathcal{K}_d} x^k(\delta^+(d)) \geq 1 \qquad \qquad d\in D$$

Symmetry-breaking constraints

$$x^{k}(\delta^{+}(d)) \ge x^{k+1}(\delta^{+}(d))$$
 $d \in D, K_{d} = \{1, \dots, m\}, k = 1, \dots, m-1$ (53)

Subtour elimination constraints

$$x^{k}(\delta^{-}(S)) \geq u_{i}^{k}$$
 $k \in K, S \subseteq V_{c}, i \in S$ (54)

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

Valid Inequalities

One-driver constraints

$$\sum_{k\in \mathcal{K}_d} x^k(\delta^+(d)) \geq 1 \qquad \qquad d\in D$$

Symmetry-breaking constraints

$$x^{k}(\delta^{+}(d)) \ge x^{k+1}(\delta^{+}(d))$$
 $d \in D, K_{d} = \{1, \dots, m\}, k = 1, \dots, m-1$ (53)

Subtour elimination constraints

$$x^{k}(\delta^{-}(S)) \ge u_{i}^{k}$$
 $k \in K, S \subseteq V_{c}, i \in S$ (54)

No-change constraints

$$x^k(S:V_c\setminus S)\geq x^k(d:S)$$

$$d \in D, k \in K_d, S \subseteq V_r$$

(55)

(52)

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

Note 3: $x^k(S : V_c \setminus S) \ge x^k(d : S)$ for all $d \in D, k \in K_d, S \subseteq V_r$

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

A D > A B > A B > A B >

э

Note 3: $x^k(S : V_c \setminus S) \ge x^k(d : S)$ for all $d \in D, k \in K_d, S \subseteq V_r$

They can be rewritten as

$$x^k(S:V_c\setminus S)+x^k(d:V_r\setminus S)\geq x^k(d:V_r)$$

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

イロト イヨト イヨト

Note 3: $x^k(S : V_c \setminus S) \ge x^k(d : S)$ for all $d \in D, k \in K_d, S \subseteq V_r$

They can be rewritten as

$$x^k(S:V_c\setminus S)+x^k(d:V_r\setminus S)\geq x^k(d:V_r)$$

Given x^* , let us consider two dummy nodes s and t, and define a graph G' = (V', A') where the node set is $V' = V_c \cup \{s, t\}$ and the arc set A' includes

- all the arcs $(i,j) \in A$ with $i,j \in V_c$, each one with capacity x_{ij}^{*k} ,
- a new arc (s,i) for each $i \in V_r$, with capacity x_{di}^{*k} , and
- a new arc (i, t) for each $i \in V_e$, with infinite capacity.

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

イロト 不得 トイヨト イヨト

Note 3: $x^k(S : V_c \setminus S) \ge x^k(d : S)$ for all $d \in D, k \in K_d, S \subseteq V_r$

They can be rewritten as

$$x^k(S:V_c\setminus S)+x^k(d:V_r\setminus S)\geq x^k(d:V_r)$$

Given x^* , let us consider two dummy nodes s and t, and define a graph G' = (V', A') where the node set is $V' = V_c \cup \{s, t\}$ and the arc set A' includes

- all the arcs $(i,j) \in A$ with $i,j \in V_c$, each one with capacity x_{ij}^{*k} ,
- a new arc (s, i) for each $i \in V_r$, with capacity x_{di}^{*k} , and
- a new arc (i, t) for each $i \in V_e$, with infinite capacity.

Let $S' \subset V'$ be the optimal min-cut solution separating s from t in G', with $d \in S'$. Note that the set S' contains only the depot d and some customers in V_r .

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

・ ロ マ ・ 日 マ ・ 日 マ ・ 日 マ

Note 3: $x^k(S : V_c \setminus S) \ge x^k(d : S)$ for all $d \in D, k \in K_d, S \subseteq V_r$

They can be rewritten as

$$x^k(S:V_c\setminus S)+x^k(d:V_r\setminus S)\geq x^k(d:V_r)$$

Given x^* , let us consider two dummy nodes s and t, and define a graph G' = (V', A') where the node set is $V' = V_c \cup \{s, t\}$ and the arc set A' includes

- all the arcs $(i,j) \in A$ with $i,j \in V_c$, each one with capacity x_{ij}^{*k} ,
- a new arc (s,i) for each $i \in V_r$, with capacity x_{di}^{*k} , and
- a new arc (i, t) for each $i \in V_e$, with infinite capacity.

Let $S' \subset V'$ be the optimal min-cut solution separating s from t in G', with $d \in S'$. Note that the set S' contains only the depot d and some customers in V_r .

If the capacity of the arcs leaving S' is smaller than $x^{*k}(d : V_r)$, then $S = S' \setminus \{d\}$ defines a violated inequality (55) to add to the current linear program.

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

A D > A B > A B > A B >

Cutting plane phase

- Step 1: To detect violated constraints (54).
- Step 2: To find violated constraints (55).
- Step 3: To look for violated constraints (50).
- Step 4: To find violated inequalities (51).

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

イロト イヨト イヨト イヨト

Computational results

- Computer with Intel Core i3 CPU at 3.4 GHz
- Cplex 12.7
- Random instances with $n + 2 \in \{10, 15, 20, 25, 30\}$. Coordinates in $[0, 100] \times [0, 100]$
- The arc costs c_{ij} are the Euclidean distance between i and j
- $|V_e| = 1$
- $t_{ij} = c_{ij}/60 + 60$ for all $(i, j) \in A$
- Four values for T on each instance: T_A, T_B, T_C, T_D
- $K_d = L_d = 3$ for all $d \in D$
- Time limit (T.L.) = 2 hours.

Conclusions

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

			(30)-((53)	(30)–(55)		(30)–(53), (54)	(30)–(54)		
name	<i>n</i> + 2	T_C	time	GAP	time	GAP	time	GAP	time	GAP	
n10-1	10	8	34.24	33.66	2.28	16.59	7.89	23.78	0.73	5.08	
n10-2	10	7	2.00	9.25	0.23	4.11	0.31	3.60	0.08	0.00	
n10-3	10	7	20.11	33.59	0.87	1.68	4.59	25.26	0.14	1.08	
n10-4	10	7	10.53	18.75	0.41	11.46	0.53	8.94	0.27	0.18	
n10-5	10	7	18.52	34.83	1.00	2.53	5.52	24.82	0.12	1.02	
n15-1	15	9	532.42	30.37	129.03	27.79	17.55	13.75	0.97	6.94	
n15-2	15	9	87.30	24.14	0.36	0.00	21.86	20.94	0.23	0.00	
n15-3	15	9	138.09	17.27	5.49	0.96	6.80	13.90	0.19	0.00	
n15-4	15	9	1390.84	21.93	125.07	13.01	47.14	16.28	0.69	1.15	
n15-5	15	9	T.L.	37.37	17.67	10.10	130.56	20.34	0.59	0.18	
n20-1	20	10	T.L.	67.08	6877.34	13.64	T.L.	26.48	10.41	6.00	
n20-2	20	10	T.L.	24.66	1433.32	11.89	188.96	17.86	9.63	4.61	
n20-3	20	10	T.L.	56.83	T.L.	16.11	1886.21	19.34	32.84	4.56	
n20-4	20	10	T.L.	14.99	295.95	9.17	53.73	11.62	9.66	3.96	
n20-5	20	10	T.L.	23.79	T.L.	18.59	485.27	17.36	7.78	5.72	
n25-1	25	11	T.L.	47.54	T.L.	8.42	591.27	8.52	110.18	1.53	
n25-2	25	11	T.L.	61.30	T.L.	53.79	4722.38	17.51	167.98	6.53	
n25-3	25	11	T.L.	20.08	4033.76	8.88	60.92	10.12	9.87	2.93	
n25-4	25	11	T.L.	47.21	1479.67	13.65	581.18	13.39	22.28	1.70	
n25-5	25	11	T.L.	28.68	3852.10	14.87	T.L.	52.45	58.72	5.54	
n30-1	30	13	T.L.	61.22	T.L.	47.76	T.L.	47.14	135.27	6.11	
n30-2	30	13	T.L.	67.56	T.L.	50.41	T.L.	15.89	62.06	1.25	
n30-3	30	13	T.L.	43.40	T.L.	14.86	T.L.	22.47	38.78	3.46	
n30-4	30	13	T.L.	57.35	T.L.	48.39	778.87	12.41	146.89	7.75	
n30-5	30	13	T.L.	33.85	448.96	3.33	T.L.	14.57	18.35	< 1.03 <	3

University of La Laguna, Tenerife

æ.

Conclusions

Examples of solution Problem Formulation Valid Inequalities & Cutting plane phase Computational results

name	<i>n</i> +2	T_A	GAP	sol	time	T_B	GAP	sol	time	T _C	GAP	sol	time	T_D	GAP	sol	time
n10-1	10	6	34.83	652	7.22	7	8.53	442	0.41	8	5.08	410	0.73	10	0.00	369	0.05
n10-2	10	5	38.32	486	17.43	6	0.00	292	0.06	7	0.00	292	0.08	10	0.00	292	0.05
n10-3	10	5	56.69	987	272.77	6	39.95	646	327.38	7	1.08	390	0.14	10	0.00	383	0.06
n10-4	10	5	33.21	610	4.52	6	28.15	534	8.00	7	0.18	384	0.27	10	0.00	383	0.06
n10-5	10	5	35.39	595	6.91	6	2.88	365	0.59	7	1.02	356	0.12	10	0.00	350	0.06
n15-1	15	6	22.35	454	34.43	8	4.58	349	0.83	9	6.94	349	0.97	12	0.00	302	0.23
n15-2	15	6	34.19	746	60.59	8	1.67	414	1.06	9	0.00	406	0.23	12	0.00	406	0.25
n15-3	15	6	33.95	660	50.44	8	12.14	442	9.72	9	0.00	388	0.19	12	0.00	388	0.20
n15-4	15	6	46.94	1094	T.L.	8	28.71	715	473.82	9	1.15	497	0.69	12	1.29	460	1.37
n15-5	15	6	30.61	787	83.09	8	37.31	751	T.L.	9	0.18	471	0.59	12	0.00	469	0.31
n20-1	20	7	54.47	1285	T.L.	9	36.32	846	T.L.	10	6.00	557	10.41	14	0.74	520	2.48
n20-2	20	7	29.72	666	4071.75	9	4.69	450	4.84	10	4.61	438	9.63	14	2.85	399	2.06
n20-3	20	7	32.15	845	6576.33	9	30.13	757	T.L.	10	4.56	540	32.84	14	0.57	507	2.82
n20-4	20	7	23.40	600	997.44	9	25.14	580	6305.20	10	3.96	447	9.66	14	0.00	415	0.44
n20-5	20	7	30.14	647	3623.64	9	22.32	538	1574.83	10	5.72	432	7.78	14	8.31	409	13.71
n25-1	25	8	25.41	718	2002.73	10	29.36	711	T.L.	11	1.53	499	110.18	16	0.00	483	4.57
n25-2	25	8	39.53	825	T.L.	10	33.71	716	T.L.	11	6.53	501	167.98	16	5.36	483	52.12
n25-3	25	8	24.19	603	3463.28	10	22.07	555	4473.84	11	2.93	439	9.87	16	0.00	405	1.31
n25-4	25	8	26.39	683	3530.49	10	30.85	680	T.L.	11	1.70	469	22.28	16	0.22	454	9.50
n25-5	25	8	28.77	721	3720.39	10	32.62	703	T.L.	11	5.54	491	58.72	16	0.00	451	2.87
n30-1	30	9	26.98	877	T.L.	12	31.76	864	T.L.	13	6.11	615	135.27	18	2.58	581	57.35
n30-2	30	9	33.64	927	T.L.	12	35.18	863	T.L.	13	1.25	560	62.06	18	0.00	552	22.12
n30-3	30	9	31.68	812	T.L.	12	40.06	818	T.L.	13	3.46	506	38.78	18	0.00	485	10.41
n30-4	30	9	29.10	756	T.L.	12	25.94	676	T.L.	13	7.75	536	146.89	18	2.60	495	121.43
n30-5	30	9	29.67	756	T.L.	12	33.90	739	T.L.	13	1.03	493	<u>18.35</u>	18	0.97	490	35.32

University of La Laguna, Tenerife

Summarizing ...

- While working on Autonomous Vehicle Routing is important today (supported by EU projects), we cannot forget that in the coming years both vehicles and drivers still coexists.
- Vehicles and humans have different constraints when designing their duties (routes).
- In many situations the integrated vehicle-driver problem is the combination of two VRPs with some linking variables.
- All the experiences and advances on VRPs help to produce better solutions in real-world applications.
- We have shown that optimal solutions for an integrated vehicle-driver problem can be generated for a regional airline, and then perhaps for other companies too!
- We have described two academic vehicle-driver problems for which optimal solutions can also be generated. Other variants are interesting research challenges for future investigations.

イロト イヨト イヨト

References

- J-J. Salazar–González. Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier. Omega 43, 71–82, 2014.
- V. Cacchiani, J-J. Salazar–González. Optimal solutions to a real-world integrated airline scheduling problem. Transportation Science 51, 250–268, 2017.
- V. Cacchiani, J-J. Salazar–González. Heuristic approaches for flight retiming in an integrated airline scheduling problem of a regional carrier. Omega, (to appear), 2019.
- B. Domínguez–Martín, I. Rodríguez–Martín, and J-J. Salazar–González. An exact algorithm for a vehicle-and-driver scheduling problem. Computers and Operations Research 81, 247–256, 2017.
- B. Domínguez–Martín, I. Rodríguez–Martín, and J-J. Salazar–González. The driver and vehicle routing problem. Computers and Operations Research 92, 56–64, 2018.
- B. Domínguez–Martín, I. Rodríguez–Martín, and J-J. Salazar–González. A heuristic approach to the driver and vehicle routing problem. R. Cerulli et al. (Eds.): ICCL 2018, LNCS 11184, 295–305, 2018.

A great O.R. Journal to publish your research results:

At link.springer.com since 1993.

Year	factor	articles	position
2008	0.694	17	45/64
2009	0.865	24	47/73
2010	0.765	27	49/75
2011	0.765	24	42/77
2012	0.843	40	44/79
2013	0.766	25	54/79
2014	0.831	57	61/81
2015	0.927	32	55/82
2016	0.899	32	64/83
2017	1.094	25	60/83
2018	?	25	?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで