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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Bad time for regional airline companies; closed in Spain since 2000:

Galicia. Prima Air
Navarra. Ĺıneas Aéreas Navarras (Air Truck)
Málaga. Pauknair
Vitoria. ERA
Mallorca. Air Europa Express
Málaga. Binter Mediterráneo
Baleares. Aebal (closed on September 2008)
La Rioja. Iberline
Barcelona. Air Catalunya. Intermed
Asturias. Air Asturias (closed on January 2007)
La Rioja. Rioja Airlines (closed on 9 September 2007)
León. Lagun Air (closed on January 2005)
Córdoba. Flysur (Taer Andalus) (closed on 9 October 2008)

Almeŕıa. Ándalus (closed on June 2010)
Granada. Helitt (closed on 23 September 2014)
Canarias. Top Fly (closed on Nov 2009). Islas Airways (closed on August 2014)

Not mentioning larger airlines in Spain like: LTE, Hola Airlines, Bravo Airlines, Quantum Air, Spantax, Volar
Airlines, Tadair, Futura, Air Madrid, Air Comet, Spanair.
Regional airlines operating today in Spain: Air Nostrum, Binter Canarias, CanaryFly.
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

One geographical region, 2 provinces, 8 airports

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

The company: BinterCanarias (www.bintercanarias.com)

11 airports: LPA, TFN, TFS, SPC, VDE, ACE, FUE, GMZ ; FNC, EUN, RAK

18 aircrafts ATR 72

around 150 daily flights from 07:00 to 23:00

It moves 80% for the air transport between Canary Islands

It transported around 2,600,000 persons in 2014

aircrafts and crews are divided in 3 operators: Binter,Naysa,Canair
Binter has 2 aircrafts, Naysa has 12 aircrafts, Canair has 4 aircrafts.

crews of each operator are divided in 2 bases depending on the home island (TFN , LPA)
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Need of optimization!
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Traditional optimization problems for airline companies are:

Flight scheduling

Fleet assignment

Aircraft routing

Crew pairing

Crew rostering

Aircraft rostering

Disruption management

Typically they are solved one after the other, in a sequence, for a large airline company.

We solve the first 4 problems (related to a given day) in a single integrated routing problem,
for our regional airline company, as follows:
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Given a fixed day, our routing problem is

The customers are the flights (around 150), each defined by

flight number; example: 104

departure airport; example: TFN

departure time; example: 07:30

arrival airport; example: LPA

arrival time; example: 08:00

The depots are the two special airports (bases): TFN & LPA

The vehicles are: crews & aircrafts

We will talk here about designing 2 type of routes:

routes for crews

routes for aircrafts
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Requirements:

Each crew must sleep in its base: TFN or LPA.

Each aircraft must sleep alternatively inside and outside LPA.

TFN LPA
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⇒ Aircraft Changes: some crews change from one aircraft to another aircraft

A crew cannot operate more than 8 flights (per day) and cannot work more than 9 consecutive
hours (per day)
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Need of optimization!
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Airline Scheduling (aircraft routing, crew pairing)

Cordeau, Stojkovic, Soumis, Desrosiers (2001) in TS
Klabjan, Johnson, Nemhauser, Gelman, Ramaswamy (2002) in TS
Cohn, Barnhart (2003) in OR
Mercier, Cordeau, Soumis (2005) in C&OR
Mercier, Soumis (2007) in C&OR
Weide, Ryan, Ehrgott (2010) in C&OR
...

Vehicle Routing Problem with Time Windows

Bard, Kontoravdis, Yu (2002) in OR
Kallehauge, Boland, Madsen (2007) in N
Ropke, Cordeau, Laporte (2007) in N
Jepsen, Petersen, Spoorendonk, Pisinger (2008) in OR
Kallehauge (2008) in C&OR
...
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

2-depot driver-and-vehicle routing problem: arc model

V := Vd ∪ Vc where Vd := {TFN, LPA} and Vc are flights

xij = 1 if and only if a crew will fly j immediately after i
yij = 1 if and only if an aircraft will fly j immediately after i
zij = 1 if and only if an “aircraft change” will occur from i to j

min
∑

i,j∈Vc

cijxij + α
∑
d∈Vd

x(δ+(d)) + β
∑
d∈Vd

y(δ+(d)) + γ
∑

i,j∈Vc

zij

x(δ+(i)) = x(δ−(i)) [= 1 if i ∈ Vc ] for all i ∈ V (1)

x(A(S)) ≤ |S| − 1 for all S ⊆ Vc (2)

x(d1 : S) + x(A(S)) + x(S : d2) ≤ |S | for all S ⊆ Vc , {d1, d2} = Vd (3)

y(δ+(i)) = y(δ−(i)) [= 1 if i ∈ Vc ] for all i ∈ V (4)

y(A(S)) ≤ |S| − 1 for all S ⊆ Vc (5)

y(d : S) + y(A(S)) + y(S : d) ≤ |S| for all S ⊆ Vc , d ∈ Vd (6)

xij ≤ yij + zij for all i , j ∈ Vc (7)

“syncronization” between crew and aircraft (8)
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Time-synchronization constraints

ti = elapsed time of serving customer i
tij = elapsed time of moving a driver or vehicle from i to j
T = time period (big-M)
Example: ti = 30 minutes, tij = 30 minutes, T = 16 hours.

wi = [unknown] wall-clock time when customer i starts being served

For all i , j ∈ Vc :

wj ≥ wi + (ti + tij)xij − (T − ti )(1− xij) (9)

wj ≥ wi + (ti + tij)yij − (T − ti )(1− yij) (10)
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

When flight departures are given, i.e. no schedule redesign

Customer i requires to start being served at a precise time.

A crew and aircraft can go from i to j only if

the arrival airport of i is the departure airport of j

the arrival time of i (+tij) is before the departure time of j

Then the underlying graph is asymmetric and acyclic.

On our real-world instances: about 150 nodes and about 1500 arcs.

and the exponential-number of SECs (2)–(3) and (5)–(6), and variables wi are useless.
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

aircraft routing & crew pairing & little schedule redesign

When flight retiming are allowed to potentially have better (or feasible) routing solutions:
Each flight is given with a proposal of departure time and with plus/minus a possible
modification.
For example, flight i will departure at 09:15 within +10 or −10 minutes.

Then wi is a necessary variable assuming values in [ei , li ].
In our case li − ei < tij , thus the graph is almost acyclic.
For each i and j , there is an arc (i , j) if ei + ti + tij ≤ lj , and

wj ≥ wi + (ti + tij)xij + (ej − li )(1− xij)

wj ≥ wi + (ti + tij)yij + (ej − li )(1− yij)

Thus big-M values are not so problematic!
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

aircraft routing & crew pairing & discrete retiming

When a flight has a set of 3 to 5 options for departure, we add a node to the graph
representing each flight and each potential departure.

H.D. Sherali, K-H. Bae, and M. Haouari. An integrated approach for airline ight selection
and timing, fleet assignment, and aircraft routing. Transportation Science, 47(4):455–476,
2013.

R. van Lieshout, J. Mulder, and D. Huisman. The vehicle rescheduling problem with
retiming. Computers & Operations Research, 96:131–140, 2018.

V. Cacchiani, J-J. Salazar-González. Heuristic approaches for flight retiming in an
integrated airline scheduling problem of a regional carrier. Omega (to appear) 2019.
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Master problem:

min
m∑

k=1

∑
P∈Pk

cPxP + α

m∑
k=1

∑
P∈Pk

xP + β

r∑
h=1

∑
Q∈Qh

yQ + γ
∑
a∈A

za,

∑
P∈Pk

xP ≤ f k , k = 1, . . . ,m,

m∑
k=1

∑
P∈Pk

j

xP = 1, j ∈ NC ,

∑
Q∈Qh

yQ ≤ gh, h = 1, . . . , r ,

r∑
h=1

∑
Q∈Qk

j

yQ = 1, j ∈ NC ,

m∑
k=1

∑
P∈Pk

a

xP ≤
r∑

h=1

∑
Q∈Qh

a

yQ + za, a ∈ A,

xP ∈ {0, 1}, k = 1, . . . ,m, P ∈ Pk ,

yQ ∈ {0, 1}, h = 1, . . . , r , Q ∈ Qh,

za ∈ {0, 1}, a ∈ A.



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

2-depot driver-and-vehicle routing problem: path model

...
Subproblem:

Maximum-profit path P from airport σk
c to airport τ kc in (N,A) with node profits β̄j for each

j ∈ NC and arc profits ψ̄a for each a ∈ A, including at most 8 nodes and duration at most 9 hours.

Maximum-profit path Q from airport σh
a to airport τ ha in (N,A) with node profits φ̄j for each

j ∈ NC and arc profits ψ̄a for each a ∈ A.

Both path problems can be solved by a dynamic-programming procedure.

Still, the best model uses path-variables for the crew aspect and arc-variables for the aircraft aspect.
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Arc-path method (versus Path-path method)

Algorithm based on the model with path-variables for crews and arc-variables for aircrafts:

Step 1: Solve the linear-programming relaxation: LB

Step 2: Solve (<2 minute) the relaxation with integer variables: UB

Step 3: Generate all path-variables with reduce cost smaller than UB−LB

Step 4: Solve (<2 hour) the extended model with integer variables: OPT

Branch-and-cut framework: CPLEX 12.4

Computer: CORE i5-2400 3.10GHZ, 16GB RAM
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Path-path method Arc-path method
Inst. #f %Gap TLB TUB BEST TTot %Gap TLB TUB BEST TTot

1/9 102 0.45 42 120 22028 2868 0.09 31 22 22028 551
2/9 140 - 218 120 28886 TL 0.07 148 13 27828 315
3/9 130 - 132 120 25172 3228 0.02 108 5 25172 136
4/9 124 - 101 120 24018 TL 0.08 73 120 24017 2088
5/9 124 - 116 120 24122 TL 0.08 89 62 24121 664
6/9 128 0.40 134 120 24796 TL 0.08 94 120 24796 1777
7/9 150 - 286 120 28049 TL 0.08 255 120 27970 6589
1/4 138 - 231 120 27288 TL 0.07 223 120 27287 7068
2/4 132 - 150 120 28985 693 0.00 130 4 28985 134
3/4 138 - 172 120 29266 1241 0.23 156 120 29266 286
4/4 136 - 162 120 29101 724 0.00 188 6 29101 194
5/4 144 - 207 120 29962 842 0.00 223 22 29962 245
6/4 172 - 640 120 33103 1983 0.00 653 29 33103 682
7/4 100 - 32 120 21300 TL 0.44 31 34 21300 498
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Path-path model Arc-path model
Inst. #f xR lp yR lp xRbp yRbp xR lp yalp xRgap yagap TxR TyR Tya
1/9 102 1259 1576 2337 7069 654 10128 537 3779 10838 1065025 10128
2/9 140 2195 2773 7592 19383 997 17609 1061 6130 34643 6603705 17609
3/9 130 1731 2229 3575 9203 839 16346 516 4206 30398 5989657 16346
4/9 124 1493 1995 5300 13592 754 15005 827 6281 23048 3843521 15005
5/9 124 1528 2142 5061 14712 811 14985 658 5361 22896 3848204 14985
6/9 128 1674 2274 4243 17123 785 15676 843 5679 25566 4570737 15676
7/9 150 2271 2848 6335 15515 1119 21511 1030 8434 60910 16501692 21511
1/4 138 2578 2873 24519 11349 1092 18892 1647 6882 73120 14196210 18892
2/4 132 1988 2329 2220 3115 908 19071 - - 63804 18144693 19071
3/4 138 2006 2308 2611 4285 861 21095 5192 18606 84627 23753712 21095
4/4 136 2024 2396 2193 3079 957 20744 - - 83098 23425413 20744
5/4 144 2190 2631 2317 3330 999 22903 - - 102195 31424952 22903
6/4 172 3219 3695 3517 4824 1321 30473 - - 207776 30473
7/4 100 1179 1370 4918 10504 709 10786 2563 9873 15411 1979296 10786
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Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Arc-path method Manual solution
Inst. #f #a #c #ch Opt #a #c #ch Heu %Gap
1/9 102 12 22 4 22028 14 24 8 24600 11.68
2/9 140 15 28 5 27828 17 28 7 29045 4.37
3/9 130 14 25 5 25172 15 26 6 26818 6.54
4/9 124 13 24 4 24017 13 25 5 25450 5.97
5/9 124 13 24 4 24121 14 25 4 25466 5.58
6/9 128 13 25 4 24796 13 26 4 26368 6.34
7/9 150 15 28 5 27970 15 30 5 30127 7.71
1/4 138 17 27 6 27287 17 28 7 29163 6.88
2/4 132 16 29 6 28985 16 31 6 31467 8.56
3/4 138 16 29 6 29266 16 31 6 32273 10.27
4/4 136 16 29 6 29101 16 35 6 35956 23.56
5/4 144 16 30 6 29962 16 31 6 31798 6.13
6/4 172 17 33 6 33103 17 36 8 36341 9.78
7/4 100 12 21 4 21300 11 24 4 24622 15.60
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Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

notation for crew-rostering

I= set of crews ; J= set of days ; K= set of crew routes
Input:

aij =

{
1 if crew i is available on day j

0 otherwise.

di = number of working days for crew j (e.g. 15 if he works 50% part time)

Output:

xijk =

{
1 if crew i flies in day j following route k

0 otherwise.

yij =

{
1 if crew i starts 3-day holidays in day j

0 otherwise.
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Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Other variables

nMi = number of morning routes for crew i

nTi = number of afternoon routes for crew i

ztime = longest working time

zM = worst number of morning routes

zT = worst number of afternoon routes

zroutes = worst number of (real and fictitious) routes

zimag = worst number of fictitious routes

zpern = worst number of non-cycle routes

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

minα · ztime + β · zM + γ · zT + δ · zroutes + δ · zimg + ε · zpern∑
i

xijk = 1 for all j , k∑
k

xijk + yij + yi,j−1 + yi,j−2 ≤ aij for all i , j∑
j=F ,S

yij = 1 for all i

∑
k

xi,j−1,k ≥ yij for all i , j∑
k

xi,j+3,k ≥ yij for all i , j

∑
k

MaxD∑
l=0

xi,j+l,k ≤ MaxD for all i , j

...
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Conclusions

Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

∑
k=KT (j)

xijk +
∑

k=KM (j+1)

xi,j+1,k ≤ 1 for all i , j

∑
k=KT (j)

xijk + (1−
∑

k∈K(j+1)

xi,j+1,k) +
∑

k=KM (j+2)

xi,j+2,k ≤ 2 for all i , j

∑
k=0T (j)

xijk + (1−
∑

k∈K(j+1)

xi,j+1,k) +
∑

k=0M (j+2)

xi,j+2,k ≤ 2 for all i , j

∑
j

∑
k

xijk ≤
∑
j

aij −
di

dmax
freeD for all i

∑
j

∑
k∈KM (j)

xijk = nMi for all i

∑
j

∑
k∈KT (j)

xijk = nTi for all i
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Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

−maxDMT ≤ nMi − nTi ≤ maxDMT for all i

nMi ≤
di

dmax
zM for all i

nTi ≤
di

dmax
zT for all i∑

j

∑
k

tk · xijk ≤
di

dmax
ztime for all i
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Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

Computational Results

|I | |K | nvars ncons LP tLP LB UB gap
7 96 904 1321 4969.0 0.3 4969.0 4970 0.02

10 177 2098 2547 6608.0 1.0 6608.0 6615 0.10
26 478 12254 14895 4683.7 18.7 4683.7 4770 1.84
18 300 4652 6004 3814.4 3.2 3814.4 3840 0.67

7 100 918 1323 4969.0 0.3 4969.0 4970 0.02
13 179 2738 3259 5084.0 1.4 5084.0 5100 0.31
23 487 10680 10000 5339.9 14.5 5339.9 5530 3.56
17 293 4326 5679 4066.4 3.0 4066.4 4085 0.46
16 126 2056 2896 4606.6 0.7 4606.6 4625 0.40
23 202 4815 5628 5873.7 1.7 5873.7 5935 1.04
47 619 20782 26542 5562.6 9.0 5562.6 5980 7.50
30 374 7688 9854 4766.2 4.5 4766.2 4890 2.60

SCIP 3.0 + Soplex 1.7 , Intel Core Duo 2.17 Ghz , time limit =1 hour.
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Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
Problem formulation
Valid inequalities & Cutting plane phase
Computational results

1 Motivation: case study in air transport
Need of optimization!
Crew-and-aircraft routing
Crew-and-aircraft rostering

2 The Vehicle and Driver Scheduling Problem
Examples of solution
Problem formulation
Valid inequalities & Cutting plane phase
Computational results

3 The Driver and Vehicle Routing Problem
Examples of solution
Problem Formulation
Valid Inequalities & Cutting plane phase
Computational results
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Figure: Instance n16-1-1-2-2a with 14 customers and 2 depots; at most 4 customers in a driver route;
at most 7 customer in a vehicle route
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Figure: Optimal solution of n16-1-1-2-2a
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Figure: Optimal solution of n32-1-1-4-4a
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Figure: Optimal solution of n40-2-2-10-10a
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Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
Problem formulation
Valid inequalities & Cutting plane phase
Computational results

Problem formulation

Notation:

Vc = {1, . . . , n}: set of customers. Vd = {0, n + 1}: set of depots.

V = Vc ∪ Vd vertices. A = {(i , j) : i , j ∈ V , i 6= j} arcs. G = (V ,A) a directed graph.

ckij : the cost to pay when a vehicle of type k traverses an arc (i , j), for k ∈ {1, 2}.
Qk : the maximum number of customers that can be served by a vehicle of type k, for
k ∈ {1, 2}.
K k
d : the number of vehicles of type k available at the depot d , for k ∈ {1, 2}.

For S ⊆ V : δ+(S) := {(i , j) ∈ A : i ∈ S , j /∈ S} and A(S) := {(i , j) ∈ A : i ∈ S , j ∈ S}.
For A′ ⊆ A: xk(A′) =

∑
(i,j)∈A′ xkij .
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Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
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Valid inequalities & Cutting plane phase
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Problem formulation

Variables:

x1
ij ∈ {0, 1} takes value 1 iff a vehicle of type 1 (like crews) traverses arc (i , j) ∈ A.

x2
ij ∈ {0, 1} takes value 1 iff a vehicle of type 2 (like vehicles) traverses arc (i , j) ∈ A.

yij ∈ {0, 1} takes value 1 iff a vehicle-change happens at (i , j).

zki ≥ 0: the number of customers that a vehicle of type k has served immediately after
serving customer i , with k ∈ {1, 2}. (to control capacities)

wi ≥ 0: the position in which customer i is served. (to control synchronization)
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The problem can be modeled as follows:

min
∑

(i,j)∈A

c1
ijx

1
ij +

∑
(i,j)∈A

c2
ijx

2
ij + N

∑
i∈Vd ,j∈Vc

x1
ij + M

∑
(i,j)∈A

yij

subject to:

x1(δ+(i)) = x1(δ−(i)) = 1 ∀i ∈ Vc (11)

x1(δ+(j)) = x1(δ−(j)) ≤ K 1
j ∀j ∈ Vd (12)

x1(δ+(S)) ≥
∑
i∈S

(x1
0,i + x1

i,n+1) ∀S ⊆ Vc : S 6= ∅ (13)

x1(δ+(S)) ≥
∑
i∈S

(x1
n+1,i + x1

i,0) ∀S ⊆ Vc : S 6= ∅ (14)

x1
ij ∈ {0, 1} ∀(i , j) ∈ A
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x2(δ+(i)) = x2(δ−(i)) = 1 ∀i ∈ Vc (15)

x2(δ+(0)) = x2(δ−(n + 1)) ≤ K2
0 (16)

x2(δ+(n + 1)) = x2(δ−(0)) ≤ K2
n+1 (17)

x2(δ+(S)) ≥
∑
i∈S

(x2
0,i + x2

i,0) ∀S ⊆ Vc ; S 6= ∅ (18)

x2(δ+(S)) ≥
∑
i∈S

(x2
n+1,i + x2

i,n+1) ∀S ⊆ Vc ; S 6= ∅ (19)

x2
ij ∈ {0, 1} ∀(i , j) ∈ A

zkj ≥ zki + xkij − (Qk − 1)(1− xkij ) ∀(i , j) ∈ A; i , j ∈ Vc ; k = 1, 2 (20)

wj ≥ wi + xkij − (n − 1)(1− xkij ) ∀(i , j) ∈ A; i , j ∈ Vc ; k = 1, 2 (21)

x1
ij ≤ x2

ij + yij ∀(i , j) ∈ A (22)

yij ≥ 0 ∀(i , j) ∈ A

wi ≥ 0 ∀i ∈ Vc

zki ≥ 0 ∀i ∈ Vc ; k = 1, 2.
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Note 1: same inequalities in different format (≥ versus ≤)

x1(δ+(S)) ≥
∑
i∈S

(x1
0,i + x1

i,n+1) ≡ x1(0 : S) + x1(A(S)) + x1(S : n + 1) ≤ |S |

x1(δ+(S)) ≥
∑
i∈S

(x1
n+1,i + x1

i,0) ≡ x1(n + 1 : S) + x1(A(S)) + x1(S : 0) ≤ |S |

x2(δ+(S)) ≥
∑
i∈S

(x2
0,i + x2

i,0) ≡ x2(0 : S) + x2(A(S)) + x2(S : 0) ≤ |S |

x2(δ+(S)) ≥
∑
i∈S

(x2
n+1,i + x2

i,n+1) ≡ x2(n + 1 : S) + x2(A(S)) + x2(S : n + 1) ≤ |S |
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Note 2: separating x1(δ+(S)) ≥
∑

i∈S(x1
0,i + x1

i ,n+1) for all S ⊆ Vc

They can be rewritten as

x1(δ+(S)) +
∑
i /∈S

(x1
0,i + x1

i,n+1) ≥
∑
i∈Vc

(x1
0,i + x1

i,n+1).

Given x∗, let us consider a support graph G ′ = (V ′,A′) with V ′ = V ∪ {s, t}, being s and t
dummy nodes. The arc set A′ is defined as follows:

all the arcs (i , j) ∈ A such that x1∗
ij > 0, each one with capacity x1∗

ij ,

all arcs (s, i) with nodes i ∈ Vc , each one with capacity x1∗
0,i + x1∗

i,n+1, and

the arcs (i , t) with nodes i ∈ Vd , each one with infinite capacity.

Let S ⊂ V ′ be the solution of the min-cut problem separating s from t, s ∈ S , in G ′.

If the capacity of the arcs leaving S on G ′ is smaller than
∑

i∈Vc
(x1∗

0,i + x1∗
i,n+1)

then S defines a violated inequality (13) that must be added to the current linear program.
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Note 2: separating x1(δ+(S)) ≥
∑

i∈S(x1
0,i + x1

i ,n+1) for all S ⊆ Vc

They can be rewritten as

x1(δ+(S)) +
∑
i /∈S

(x1
0,i + x1

i,n+1) ≥
∑
i∈Vc

(x1
0,i + x1

i,n+1).

Given x∗, let us consider a support graph G ′ = (V ′,A′) with V ′ = V ∪ {s, t}, being s and t
dummy nodes. The arc set A′ is defined as follows:

all the arcs (i , j) ∈ A such that x1∗
ij > 0, each one with capacity x1∗

ij ,

all arcs (s, i) with nodes i ∈ Vc , each one with capacity x1∗
0,i + x1∗

i,n+1, and

the arcs (i , t) with nodes i ∈ Vd , each one with infinite capacity.

Let S ⊂ V ′ be the solution of the min-cut problem separating s from t, s ∈ S , in G ′.

If the capacity of the arcs leaving S on G ′ is smaller than
∑

i∈Vc
(x1∗

0,i + x1∗
i,n+1)

then S defines a violated inequality (13) that must be added to the current linear program.
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Valid inequalities

Subtour elimination inequalities

xk(δ+(S)) ≥ 1,∀S ⊆ Vc ,S 6= ∅, k ∈ Vd (23)

Capacity inequalities

Fractional capacity constraints

xk(δ+(S)) ≥ |S |/Qk ,∀S ⊆ Vc : S 6= ∅; k = 1, 2 (24)

Rounded capacity constraints

xk(δ+(S)) ≥ d|S |/Qke,∀S ⊆ Vc : S 6= ∅; k = 1, 2 (25)
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Multistar Inequalities (Gouveia, L., 1993)

xk(δ+(S)) ≥ 1

Qk
(|S |+

∑
i∈S

∑
j /∈S

(xkij + xkji )),∀S ⊆ Vc ,S 6= ∅, k = 1, 2 (26)

Dp Inequalities (Grötschel, M. and Padberg, M. W., 1985)

Let S = {i1, . . . , ip} ⊂ V and a vehicle type k. Then, the D−p and D+
p inequality are given,

respectively, by:

p−1∑
j=1

xkij ,ij+1
+ xkip,i1 + 2

p∑
j=3

xki1,ij +

p−1∑
j=4

j−1∑
l=3

xkij ,il ≤ p − 1 (27)

p−1∑
j=1

xkij ,ij+1
+ xkip,i1 + 2

p−1∑
j=2

xkij ,i1 +

p−1∑
j=3

j−1∑
l=2

xkij ,il ≤ p − 1 (28)
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Strengthened Comb Inequalities (Lysgaard, J. et al., 2003)

H ⊂ Vc , T1, . . . ,Tt ⊂ Vc , t ≥ 2 such that:

Ti \ H 6= ∅ and H ∩ Ti 6= ∅ for i = 1, . . . , t;

for each {i , j} ⊂ {1, . . . , t}: Ti ∩ Tj ⊂ H or Ti ∩ Tj ∩ H = ∅.
∀S ⊂ V , r̃k(S) equal to ddk(S)/Qke if S ⊂ Vc , and to ddk(Vc \ S)/Qke otherwise.

S(H,T1, . . . ,Tt) :=
t∑

j=1

(r̃ k(Tj) + r̃ k(Tj ∩ H) + r̃ k(Tj \ H))

If this quantity is odd, we consider that

xk(δ(H)) +
t∑

j=1

xk(δ(Tj)) ≥ S(H,T1, . . . ,Tt) + 1 (29)

is a strengthened comb inequality.
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Cutting plane phase

Step 1: Look for violated constraints (22).

Step 2: Find violated constraints (26) (exact separation procedure) and (25) (heuristic
separation procedure).

Step 3: Apply a heuristic procedure to separate the inequalities (27) and (28).

Step 4: Detect violated inequalities (13)–(14) and (18)–(19).

Step 5: Look for violated inequalities (29).
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Computational results

Computer with Intel Core i3 CPU at 3.4 GHz and Cplex 12.6
VRP instances have been properly adapted to suit our problem.

n + 2 ∈ {16, 20, 32, 40, 50}.
arc costs cij represent the Euclidean distance between the tasks (i , j).
Different values for M and N.
Time limit (T.L.) = 2h

We created 69 instances of three classes:
Class a (small capacity):

Qk =

⌈
n

K k
0 + K k

n+1

⌉
Class b (medium capacity):

Qk =

⌈(⌈
n

K k
0 + K k

n+1

⌉
+ (n + 2)

)
/3

⌉
Class c (large capacity):

Qk = n + 2
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M = 100, N = 10 Alg 1 (z variables) Alg 2 (capacity constraints)

name n + 2 Q2 Q1 K 2
0 K 2

n+1 K 1
0 K 1

n+1 route x y gap r-time time nodes cuts route x y gap r-time time nodes cuts
n16-1-1-2-2a 16 7 4 1 1 2 2 486 4 0 19.58 0.16 2279.52 64806 2084 486 4 0 10.09 0.09 64.23 3633 1053
n16-1-1-2-2b 16 8 7 1 1 2 2 443 2 0 8.64 0.14 10.53 914 302 443 2 0 7.78 0.06 2.89 275 343
n16-1-1-2-2c 16 16 16 1 1 2 2 411 2 0 1.86 0.12 0.19 4 121 411 2 0 2.47 0.08 0.12 4 126
n16-1-1-1-1a 16 7 7 1 1 1 1 447 2 0 9.21 0.14 13.92 1250 330 447 2 0 8.35 0.12 6.26 512 539
n16-1-1-1-1b 16 8 8 1 1 1 1 445 2 0 8.82 0.19 10.83 1040 325 445 2 0 8.44 0.14 7.00 530 688
n16-1-1-1-1c 16 16 16 1 1 1 1 411 2 0 1.62 0.20 0.25 4 126 411 2 0 2.23 0.08 0.14 8 131
n16-2-2-1-1a 16 4 7 2 2 1 1 507 2 2 8.73 0.14 250.65 16933 752 507 2 2 7.42 0.14 179.96 7923 1559
n16-2-2-1-1b 16 7 8 2 2 1 1 481 2 2 6.32 0.11 18.94 2223 382 481 2 2 5.94 0.12 11.90 1423 618
n16-2-2-1-1c 16 16 16 2 2 1 1 454 2 2 2.63 0.11 0.27 32 216 454 2 2 2.63 0.12 0.39 70 233
n16-2-2-4-4a 16 4 2 2 2 4 4 626 7 0 25.72 0.19 1266.24 32829 1762 626 7 0 7.69 0.25 131.34 6084 1276
n16-2-2-4-4b 16 7 6 2 2 4 4 497 4 0 3.72 0.19 3.00 269 261 497 4 0 5.06 0.25 2.39 228 349
n16-2-2-4-4c 16 16 16 2 2 4 4 484 4 0 3.63 0.31 0.50 20 192 484 4 0 3.62 0.20 0.34 25 207
n20-1-1-2-3a 20 9 4 1 1 2 3 675 5 1 41.09 0.11 T.L. 32379 7530 678 5 1 30.25 0.30 T.L. 20808 11061
n20-1-1-2-3b 20 10 8 1 1 2 3 531 3 0 13.50 0.14 5020.60 67709 3010 531 3 0 12.12 0.19 1238.29 16878 3301
n20-1-1-2-3c 20 20 20 1 1 2 3 503 2 0 7,07 0.11 4.27 204 343 503 2 0 8.14 0.12 4.99 377 471
n20-1-1-3-3a 20 9 3 1 1 3 3 666 6 0 33.06 0.11 T.L. 37032 5482 652 6 0 11.42 0.30 T.L. 38704 6033
n20-1-1-3-3b 20 10 8 1 1 3 3 531 3 0 13.50 0.17 4056.32 59987 2776 531 3 0 12.12 0.19 2124.20 21108 4192
n20-1-1-3-3c 20 20 20 1 1 3 3 503 2 0 7.07 0.11 3.99 193 343 503 2 0 8.14 0.12 6.55 506 537
n20-2-2-5-5a 20 5 2 2 2 5 5 860 10 0 40.10 0.20 T.L. 25832 6582 861 10 0 16.19 0.47 T.L. 25228 8905
n20-2-2-5-5b 20 9 8 2 2 5 5 589 4 0 8.59 0.17 191.91 7088 780 589 4 0 9.10 0.30 202.27 6168 1333
n20-2-2-5-5c 20 20 20 2 2 5 5 554 4 0 5.74 0.19 2.65 150 307 554 4 0 5.60 0.16 2.68 214 370
n20-5-5-2-2a 20 2 5 5 5 2 2 939 4 6 11.22 0.27 T.L. 71429 2346 951 4 6 7.17 1.01 T.L. 23951 7107
n20-5-5-2-2b 20 8 9 5 5 2 2 787 4 6 3.05 0.22 21.98 1735 466 787 4 6 1.62 0.25 8.99 917 576
n20-5-5-2-2c 20 20 20 5 5 2 2 771 4 6 1.74 0.20 1.34 94 374 771 4 6 0.92 0.30 0.62 42 377
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Alg 3 (all valid inequalities) M = 100, N = 10 M = 10, N = 1

name n + 2 Q2 Q1 K 2
0 K 2

n+1 K 1
0 K 1

n+1 route x y gap r-time time nodes cuts route x y gap r-time time nodes cuts
n16-1-1-2-2a 16 7 4 1 1 2 2 486 4 0 3.92 0.16 0.87 69 443 486 4 0 2.03 0.19 0.95 50 235
n16-1-1-2-2b 16 8 7 1 1 2 2 443 2 0 3.56 0.09 0.73 51 358 443 2 0 3.71 0.11 1.06 80 463
n16-1-1-2-2c 16 16 16 1 1 2 2 411 2 0 0.46 0.17 0.19 4 136 397 1 1 0.25 0.09 0.09 3 93
n16-1-1-1-1a 16 7 7 1 1 1 1 447 2 0 3.21 0.19 2.95 136 1016 447 2 0 3.34 0.16 2.43 140 598
n16-1-1-1-1b 16 8 8 1 1 1 1 445 2 0 3.87 0.06 1.19 98 396 445 2 0 6.04 0.06 2.43 169 652
n16-1-1-1-1c 16 16 16 1 1 1 1 411 2 0 0.23 0.20 0.22 3 137 397 1 1 0.25 0.11 0.12 3 89
n16-2-2-1-1a 16 4 7 2 2 1 1 507 2 2 2.96 0.16 2.98 174 870 507 2 2 3.69 0.39 2.87 143 418
n16-2-2-1-1b 16 7 8 2 2 1 1 481 2 2 2.50 0.08 0.66 78 383 481 2 2 5.17 0.06 2.04 168 668
n16-2-2-1-1c 16 16 16 2 2 1 1 454 2 2 0.67 0.09 0.11 4 224 440 1 3 0.21 0.08 0.11 4 103
n16-2-2-4-4a 16 4 2 2 2 4 4 626 7 0 0.44 0.41 0.58 12 273 626 7 0 0.57 0.20 0.73 33 190
n16-2-2-4-4b 16 7 6 2 2 4 4 497 4 0 3.72 0.16 0.62 47 449 484 3 1 2.11 0.11 1.03 49 323
n16-2-2-4-4c 16 16 16 2 2 4 4 484 4 0 1.34 0.20 0.31 18 232 440 1 3 0.21 0.12 0.12 3 97
n20-1-1-2-3a 20 9 4 1 1 2 3 624 5 1 16.37 0.69 T.L. 20324 10269 613 5 1 5.39 0.78 37.39 982 917
n20-1-1-2-3b 20 10 8 1 1 2 3 531 3 0 4.46 0.33 9.81 392 792 529 4 0 4.80 0.42 7.24 317 544
n20-1-1-2-3c 20 20 20 1 1 2 3 503 2 0 7.07 0.11 3.88 225 555 466 1 1 1.89 0.09 0.16 6 61
n20-1-1-3-3a 20 9 3 1 1 3 3 651 6 0 1.84 0.75 4.56 124 561 651 6 0 2.44 0.45 1.84 61 328
n20-1-1-3-3b 20 10 8 1 1 3 3 531 3 0 4.46 0.33 6.22 252 883 529 4 0 5.16 0.27 15.02 590 998
n20-1-1-3-3c 20 20 20 1 1 3 3 503 2 0 7.07 0.14 3.90 225 555 466 1 1 1.89 0.08 0.14 6 61
n20-2-2-5-5a 20 5 2 2 2 5 5 821 10 0 4.23 0.78 140.24 3679 1292 803 10 1 2.83 0.69 17.10 595 544
n20-2-2-5-5b 20 9 8 2 2 5 5 589 4 0 3.97 0.41 7.35 291 1084 572 3 1 2.91 0.31 2.22 113 418
n20-2-2-5-5c 20 20 20 2 2 5 5 554 4 0 3.20 0.20 0.87 47 304 529 3 1 0.55 0.17 0.20 4 207
n20-5-5-2-2a 20 2 5 5 5 2 2 927 4 6 1.24 1.61 36.16 781 1181 907 4 7 1.16 1.83 11.37 264 810
n20-5-5-2-2b 20 8 9 5 5 2 2 787 4 6 0.88 0.33 1.42 89 531 777 3 7 1.53 0.28 2.37 120 563
n20-5-5-2-2c 20 20 20 5 5 2 2 771 4 6 0.35 0.39 0.51 16 427 761 3 7 0.48 0.20 0.28 11 213
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M = 100, N = 10 M = 10, N = 1

name n + 2Q2 Q1 K 2
0 K 2

n+1 K
1
0 K 1

n+1 route x y gap r-time time nodes cuts route x y gap r-time time nodes cuts
n32-1-1-4-4a 32 15 4 1 1 4 4 1566 8 0 4.27 5.54 T.L. 25290 4489 1534 8 1 3.39 4.96 491.48 3958 2111
n32-1-1-4-4b 32 16 12 1 1 4 4 1155 4 0 8.10 6.86 T.L. 18266 13555 1098 3 2 3.28 5.29 416.10 4002 2389
n32-1-1-4-4c 32 32 32 1 1 4 4 979 2 0 4.7 2.06 73.68 1081 1616 913 1 1 0.00 1.73 1.73 1 535
n32-2-2-1-1a 32 8 15 2 2 1 1 1269 2 2 3.80 10.51 1540.79 4907 9962 1216 2 6 4.29 4.27 1183.05 10214 2510
n32-2-2-1-1b 32 14 16 2 2 1 1 1170 2 2 1.97 15.68 197.86 1374 2612 1149 2 3 1.86 6.10 144.68 1342 3556
n32-2-2-1-1c 32 32 32 2 2 1 1 1053 2 2 0.00 6.40 6.40 1 1065 1038 1 3 0.00 1.87 1.89 1 521
n32-2-2-5-5a 32 8 3 2 2 5 5 1970 10 2 11.06 10.75 T.L. 16075 5803 1920 10 4 2.45 10.02 974.30 6729 1955
n32-2-2-5-5b 32 14 12 2 2 5 5 1281 4 0 6.60 8.85 3592.36 16702 7943 1203 3 4 3.47 4.02 700.27 6506 3271
n32-2-2-5-5c 32 32 32 2 2 5 5 1139 4 0 2.63 2.01 15.71 283 1017 1038 1 3 0.16 2.42 3.06 11 585

n40-2-2-10-10a 40 10 2 2 2 10 10 1374 19 0 1.19 14.38 1512.37 6498 3457 1374 19 0 1.48 15.62 1343.12 6508 2789
n40-2-2-10-10b 40 17 14 2 2 10 10 824 4 0 6.57 7.97 T.L. 11663 12594 769 3 3 3.67 7.96 4915.97 21148 8594
n40-2-2-10-10c 40 40 40 2 2 10 10 791 4 0 3.43 8.08 2754.65 12835 4813 748 2 2 0.65 4.17 17.05 188 880

n40-4-4-4-4a 40 5 5 4 4 4 4 1203 8 0 9.57 29.80 T.L. 9192 7810 1252 8 4 15.73 41.93 T.L. 10533 7921
n40-4-4-4-4b 40 15 15 4 4 4 4 946 8 0 3.75 22.89 T.L. 8847 14005 902 6 2 2.37 7.16 1522.34 6769 7199
n40-4-4-4-4c 40 40 40 4 4 4 4 938 8 0 3.00 19.69 5840.10 16343 4519 849 3 5 0.17 6.35 7.47 8 752

n40-10-10-2-2a 40 2 10 10 10 2 2 1560 4 16 0.34 81.26 1242.30 2581 3471 1560 4 16 0.59 63.99 1067.11 2822 3503
n40-10-10-2-2b 40 14 17 10 10 2 2 1326 4 16 0.37 19.02 590.00 2172 4282 1326 4 16 0.83 13.03 457.77 3158 3389
n40-10-10-2-2c 40 40 40 10 10 2 2 1310 4 16 0.10 11.72 12.53 6 1828 1299 3 17 0.07 6.32 7.22 10 708

n50-6-6-2-2a 50 4 12 6 6 2 2 1464 4 8 8.93 204.42 T.L. 3766 7773 1343 4 8 6.03 116.22 T.L. 6328 9525
n50-6-6-2-2b 50 18 21 6 6 2 2 1077 4 8 0.49 36.99 918.38 1521 5318 1077 4 8 0.81 41.11 429.24 1575 4648
n50-6-6-2-2c 50 50 50 6 6 2 2 1065 4 8 0.03 18.63 19.44 11 2699 1065 4 8 0.09 15.32 16.89 9 941
n50-8-8-2-2a 50 3 12 8 8 2 2 1643 4 12 6.18 311.30 T.L. 3286 10281 1578 4 18 10.08 210.60 T.L. 6423 10364
n50-8-8-2-2b 50 18 21 8 8 2 2 1214 4 12 0.41 29.33 715.12 1333 5389 1214 4 12 0.75 29.05 219.31 1050 2429
n50-8-8-2-2c 50 50 50 8 8 2 2 1202 4 12 0.04 28.20 38.58 39 3330 1202 4 12 0.08 23.40 27.02 22 1360
n50-8-8-8-8a 50 3 3 8 8 8 8 1958 16 0 2.85 308.82 T.L. 4315 6957 1930 16 0 3.83 149.85 T.L. 8803 4218
n50-8-8-8-8b 50 18 18 8 8 8 8 1420 16 0 2.03 46.24 6275.34 10041 5821 1238 7 10 1.34 21.04 1515.88 4889 7362
n50-8-8-8-8c 50 50 50 8 8 8 8 1415 16 0 1.71 29.76 1451.36 3909 3556 1219 6 10 0.08 22.59 25.80 14 1203
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Figure: Solution examples of the instance n10-2 with T = 5 and |Ve | = 1
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Figure: Solution examples of the instance n20-4 with T = 7 and |Ve | = 1
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Figure: Solution examples of the instance n20-5 with T = 5 and |Ve | = 4
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Problem Formulation

Notation:
Given:

Vd = {0, n + 1}: set of depots. Vc = {1, . . . , n}: set of customer locations.
Vc = Vr ∪ Ve . Vr : set of regular customer locations. Ve : set of exchange locations.

V = Vd ∪ Vr ∪ Ve : the vertex set. A = {(i , j) : i , j ∈ V , i 6= j}: set of potential arcs.
G = (V ,A) is a directed graph.

cij : cost to pay when a driver traverses an arc (i , j).

Kd : set of drivers available at each depot d ∈ D. In total K =
∑

d∈D Kd drivers.

Ld : set of vehicles available at each depot d ∈ D. In total L =
∑

d∈D Ld vehicles.

tij : time a pair vehicle-driver spends to traverse an arc (i , j).

T : maximum time that a driver can spend performing a single route.
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Problem formulation

Variables:

xkij takes value 1 if the driver k ∈ K traverses the arc (i , j) ∈ A, and 0 otherwise.

yd
ij represents the number of vehicles that start their routes from depot d and traverse an

arc (i , j) ∈ A.

uki takes value 1 if the driver k ∈ K visits the customer i , and 0 otherwise.

vd
i represents the number of vehicles originating from depot d ∈ D and visiting customer i .

wi represents the (ordered) position in which customer i is served.
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The DVRP can be modeled as follows:

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (30)

subject to:

xk (δ+(i)) = xk (δ−(i)) = uki i ∈ Vc , k ∈ K (31)∑
k∈K

uki ≥ 1 i ∈ Vc (32)

xk (δ+(n + 1)) = xk (δ−(n + 1)) = 0 k ∈ K0 (33)

xk (δ+(0)) = xk (δ−(0)) = 0 k ∈ Kn+1 (34)∑
(i,j)∈A

tijx
k
ij ≤ T k ∈ K (35)

wj ≥ wi + xkij − (n − 1)(1− xkij ) k ∈ K , (i , j) ∈ A, i , j ∈ Vc (36)

wi ≥ 0 i ∈ Vc (37)

xkij ∈ {0, 1} k ∈ K , (i , j) ∈ A (38)

uki ∈ {0, 1} i ∈ V , k ∈ K . (39)
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yd (δ+(i)) = yd (δ−(i)) = vd
i i ∈ Vc , d ∈ D (40)∑

d∈D
vd
i = 1 i ∈ Vr (41)

∑
d∈D

vd
i ≥ 1 i ∈ Ve (42)

y0(δ+(n + 1)) = y0(δ−(0)) = 0 (43)

yn+1(δ+(0)) = yn+1(δ−(n + 1)) = 0 (44)

1 ≤ y0(δ+(0)) = y0(δ−(n + 1)) ≤ |L0| (45)

1 ≤ yn+1(δ+(n + 1)) = yn+1(δ−(0)) ≤ |Ln+1| (46)

wj ≥ wi + yd
ij − (n − 1)(1− yd

ij ) d ∈ D, (i , j) ∈ A : i , j ∈ Vc (47)

yd
ij ≥ 0 d ∈ D, (i , j) ∈ A (48)

vd
i ≥ 0 i ∈ Vc , d ∈ D. (49)

∑
k∈K

xkij ≥
∑
d∈D

yd
ij (i , j) ∈ A (50)

xkij ≤
∑
d∈D

yd
ij k ∈ K , (i , j) ∈ A. (51)

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
Problem Formulation
Valid Inequalities & Cutting plane phase
Computational results

yd (δ+(i)) = yd (δ−(i)) = vd
i i ∈ Vc , d ∈ D (40)∑

d∈D
vd
i = 1 i ∈ Vr (41)

∑
d∈D

vd
i ≥ 1 i ∈ Ve (42)

y0(δ+(n + 1)) = y0(δ−(0)) = 0 (43)

yn+1(δ+(0)) = yn+1(δ−(n + 1)) = 0 (44)

1 ≤ y0(δ+(0)) = y0(δ−(n + 1)) ≤ |L0| (45)

1 ≤ yn+1(δ+(n + 1)) = yn+1(δ−(0)) ≤ |Ln+1| (46)

wj ≥ wi + yd
ij − (n − 1)(1− yd

ij ) d ∈ D, (i , j) ∈ A : i , j ∈ Vc (47)

yd
ij ≥ 0 d ∈ D, (i , j) ∈ A (48)

vd
i ≥ 0 i ∈ Vc , d ∈ D. (49)

∑
k∈K

xkij ≥
∑
d∈D

yd
ij (i , j) ∈ A (50)

xkij ≤
∑
d∈D

yd
ij k ∈ K , (i , j) ∈ A. (51)

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
Problem Formulation
Valid Inequalities & Cutting plane phase
Computational results

Valid Inequalities

One-driver constraints ∑
k∈Kd

xk(δ+(d)) ≥ 1 d ∈ D (52)

Symmetry-breaking constraints

xk(δ+(d)) ≥ xk+1(δ+(d)) d ∈ D,Kd = {1, . . . ,m}, k = 1, . . . ,m − 1 (53)

Subtour elimination constraints

xk(δ−(S)) ≥ uki k ∈ K ,S ⊆ Vc , i ∈ S (54)

No-change constraints

xk(S : Vc \ S) ≥ xk(d : S) d ∈ D, k ∈ Kd ,S ⊆ Vr (55)
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Note 3: xk(S : Vc \ S) ≥ xk(d : S) for all d ∈ D, k ∈ Kd , S ⊆ Vr

They can be rewritten as

xk(S : Vc \ S) + xk(d : Vr \ S) ≥ xk(d : Vr )

Given x∗, let us consider two dummy nodes s and t, and define a graph G ′ = (V ′,A′) where
the node set is V ′ = Vc ∪ {s, t} and the arc set A′ includes

all the arcs (i , j) ∈ A with i , j ∈ Vc , each one with capacity x∗kij ,

a new arc (s, i) for each i ∈ Vr , with capacity x∗kdi , and

a new arc (i , t) for each i ∈ Ve , with infinite capacity.

Let S ′ ⊂ V ′ be the optimal min-cut solution separating s from t in G ′, with d ∈ S ′.
Note that the set S ′ contains only the depot d and some customers in Vr .

If the capacity of the arcs leaving S ′ is smaller than x∗k(d : Vr ),
then S = S ′ \ {d} defines a violated inequality (55) to add to the current linear program.

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
Problem Formulation
Valid Inequalities & Cutting plane phase
Computational results

Note 3: xk(S : Vc \ S) ≥ xk(d : S) for all d ∈ D, k ∈ Kd , S ⊆ Vr

They can be rewritten as

xk(S : Vc \ S) + xk(d : Vr \ S) ≥ xk(d : Vr )

Given x∗, let us consider two dummy nodes s and t, and define a graph G ′ = (V ′,A′) where
the node set is V ′ = Vc ∪ {s, t} and the arc set A′ includes

all the arcs (i , j) ∈ A with i , j ∈ Vc , each one with capacity x∗kij ,

a new arc (s, i) for each i ∈ Vr , with capacity x∗kdi , and

a new arc (i , t) for each i ∈ Ve , with infinite capacity.

Let S ′ ⊂ V ′ be the optimal min-cut solution separating s from t in G ′, with d ∈ S ′.
Note that the set S ′ contains only the depot d and some customers in Vr .

If the capacity of the arcs leaving S ′ is smaller than x∗k(d : Vr ),
then S = S ′ \ {d} defines a violated inequality (55) to add to the current linear program.

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
Problem Formulation
Valid Inequalities & Cutting plane phase
Computational results

Note 3: xk(S : Vc \ S) ≥ xk(d : S) for all d ∈ D, k ∈ Kd , S ⊆ Vr

They can be rewritten as

xk(S : Vc \ S) + xk(d : Vr \ S) ≥ xk(d : Vr )

Given x∗, let us consider two dummy nodes s and t, and define a graph G ′ = (V ′,A′) where
the node set is V ′ = Vc ∪ {s, t} and the arc set A′ includes

all the arcs (i , j) ∈ A with i , j ∈ Vc , each one with capacity x∗kij ,

a new arc (s, i) for each i ∈ Vr , with capacity x∗kdi , and

a new arc (i , t) for each i ∈ Ve , with infinite capacity.

Let S ′ ⊂ V ′ be the optimal min-cut solution separating s from t in G ′, with d ∈ S ′.
Note that the set S ′ contains only the depot d and some customers in Vr .

If the capacity of the arcs leaving S ′ is smaller than x∗k(d : Vr ),
then S = S ′ \ {d} defines a violated inequality (55) to add to the current linear program.

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
Problem Formulation
Valid Inequalities & Cutting plane phase
Computational results

Note 3: xk(S : Vc \ S) ≥ xk(d : S) for all d ∈ D, k ∈ Kd , S ⊆ Vr

They can be rewritten as

xk(S : Vc \ S) + xk(d : Vr \ S) ≥ xk(d : Vr )

Given x∗, let us consider two dummy nodes s and t, and define a graph G ′ = (V ′,A′) where
the node set is V ′ = Vc ∪ {s, t} and the arc set A′ includes

all the arcs (i , j) ∈ A with i , j ∈ Vc , each one with capacity x∗kij ,

a new arc (s, i) for each i ∈ Vr , with capacity x∗kdi , and

a new arc (i , t) for each i ∈ Ve , with infinite capacity.

Let S ′ ⊂ V ′ be the optimal min-cut solution separating s from t in G ′, with d ∈ S ′.
Note that the set S ′ contains only the depot d and some customers in Vr .

If the capacity of the arcs leaving S ′ is smaller than x∗k(d : Vr ),
then S = S ′ \ {d} defines a violated inequality (55) to add to the current linear program.

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
Problem Formulation
Valid Inequalities & Cutting plane phase
Computational results

Note 3: xk(S : Vc \ S) ≥ xk(d : S) for all d ∈ D, k ∈ Kd , S ⊆ Vr

They can be rewritten as

xk(S : Vc \ S) + xk(d : Vr \ S) ≥ xk(d : Vr )

Given x∗, let us consider two dummy nodes s and t, and define a graph G ′ = (V ′,A′) where
the node set is V ′ = Vc ∪ {s, t} and the arc set A′ includes

all the arcs (i , j) ∈ A with i , j ∈ Vc , each one with capacity x∗kij ,

a new arc (s, i) for each i ∈ Vr , with capacity x∗kdi , and

a new arc (i , t) for each i ∈ Ve , with infinite capacity.

Let S ′ ⊂ V ′ be the optimal min-cut solution separating s from t in G ′, with d ∈ S ′.
Note that the set S ′ contains only the depot d and some customers in Vr .

If the capacity of the arcs leaving S ′ is smaller than x∗k(d : Vr ),
then S = S ′ \ {d} defines a violated inequality (55) to add to the current linear program.

University of La Laguna, Tenerife : jjsalaza@ull.es Designing routes for vehicles and drivers @ VeRoLog 2019



Motivation: case study in air transport
The Vehicle and Driver Scheduling Problem

The Driver and Vehicle Routing Problem
Conclusions

Examples of solution
Problem Formulation
Valid Inequalities & Cutting plane phase
Computational results

Cutting plane phase

Step 1: To detect violated constraints (54).

Step 2: To find violated constraints (55).

Step 3: To look for violated constraints (50).

Step 4: To find violated inequalities (51).
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Computational results

Computer with Intel Core i3 CPU at 3.4 GHz

Cplex 12.7

Random instances with n + 2 ∈ {10, 15, 20, 25, 30}. Coordinates in [0, 100]× [0, 100]

The arc costs cij are the Euclidean distance between i and j

|Ve | = 1

tij = cij/60 + 60 for all (i , j) ∈ A

Four values for T on each instance: TA,TB ,TC ,TD

Kd = Ld = 3 for all d ∈ D

Time limit (T.L.) = 2 hours.
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(30)–(53) (30)–(55) (30)–(53), (54) (30)–(54)
name n + 2 TC time GAP time GAP time GAP time GAP
n10-1 10 8 34.24 33.66 2.28 16.59 7.89 23.78 0.73 5.08
n10-2 10 7 2.00 9.25 0.23 4.11 0.31 3.60 0.08 0.00
n10-3 10 7 20.11 33.59 0.87 1.68 4.59 25.26 0.14 1.08
n10-4 10 7 10.53 18.75 0.41 11.46 0.53 8.94 0.27 0.18
n10-5 10 7 18.52 34.83 1.00 2.53 5.52 24.82 0.12 1.02
n15-1 15 9 532.42 30.37 129.03 27.79 17.55 13.75 0.97 6.94
n15-2 15 9 87.30 24.14 0.36 0.00 21.86 20.94 0.23 0.00
n15-3 15 9 138.09 17.27 5.49 0.96 6.80 13.90 0.19 0.00
n15-4 15 9 1390.84 21.93 125.07 13.01 47.14 16.28 0.69 1.15
n15-5 15 9 T.L. 37.37 17.67 10.10 130.56 20.34 0.59 0.18
n20-1 20 10 T.L. 67.08 6877.34 13.64 T.L. 26.48 10.41 6.00
n20-2 20 10 T.L. 24.66 1433.32 11.89 188.96 17.86 9.63 4.61
n20-3 20 10 T.L. 56.83 T.L. 16.11 1886.21 19.34 32.84 4.56
n20-4 20 10 T.L. 14.99 295.95 9.17 53.73 11.62 9.66 3.96
n20-5 20 10 T.L. 23.79 T.L. 18.59 485.27 17.36 7.78 5.72
n25-1 25 11 T.L. 47.54 T.L. 8.42 591.27 8.52 110.18 1.53
n25-2 25 11 T.L. 61.30 T.L. 53.79 4722.38 17.51 167.98 6.53
n25-3 25 11 T.L. 20.08 4033.76 8.88 60.92 10.12 9.87 2.93
n25-4 25 11 T.L. 47.21 1479.67 13.65 581.18 13.39 22.28 1.70
n25-5 25 11 T.L. 28.68 3852.10 14.87 T.L. 52.45 58.72 5.54
n30-1 30 13 T.L. 61.22 T.L. 47.76 T.L. 47.14 135.27 6.11
n30-2 30 13 T.L. 67.56 T.L. 50.41 T.L. 15.89 62.06 1.25
n30-3 30 13 T.L. 43.40 T.L. 14.86 T.L. 22.47 38.78 3.46
n30-4 30 13 T.L. 57.35 T.L. 48.39 778.87 12.41 146.89 7.75
n30-5 30 13 T.L. 33.85 448.96 3.33 T.L. 14.57 18.35 1.03

Table: Different branch-and-cut algorithms on instances with T = TC and |Ve | = 1
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name n + 2 TA GAP sol time TB GAP sol time TC GAP sol time TD GAP sol time
n10-1 10 6 34.83 652 7.22 7 8.53 442 0.41 8 5.08 410 0.73 10 0.00 369 0.05
n10-2 10 5 38.32 486 17.43 6 0.00 292 0.06 7 0.00 292 0.08 10 0.00 292 0.05
n10-3 10 5 56.69 987 272.77 6 39.95 646 327.38 7 1.08 390 0.14 10 0.00 383 0.06
n10-4 10 5 33.21 610 4.52 6 28.15 534 8.00 7 0.18 384 0.27 10 0.00 383 0.06
n10-5 10 5 35.39 595 6.91 6 2.88 365 0.59 7 1.02 356 0.12 10 0.00 350 0.06
n15-1 15 6 22.35 454 34.43 8 4.58 349 0.83 9 6.94 349 0.97 12 0.00 302 0.23
n15-2 15 6 34.19 746 60.59 8 1.67 414 1.06 9 0.00 406 0.23 12 0.00 406 0.25
n15-3 15 6 33.95 660 50.44 8 12.14 442 9.72 9 0.00 388 0.19 12 0.00 388 0.20
n15-4 15 6 46.94 1094 T.L. 8 28.71 715 473.82 9 1.15 497 0.69 12 1.29 460 1.37
n15-5 15 6 30.61 787 83.09 8 37.31 751 T.L. 9 0.18 471 0.59 12 0.00 469 0.31
n20-1 20 7 54.47 1285 T.L. 9 36.32 846 T.L. 10 6.00 557 10.41 14 0.74 520 2.48
n20-2 20 7 29.72 666 4071.75 9 4.69 450 4.84 10 4.61 438 9.63 14 2.85 399 2.06
n20-3 20 7 32.15 845 6576.33 9 30.13 757 T.L. 10 4.56 540 32.84 14 0.57 507 2.82
n20-4 20 7 23.40 600 997.44 9 25.14 580 6305.20 10 3.96 447 9.66 14 0.00 415 0.44
n20-5 20 7 30.14 647 3623.64 9 22.32 538 1574.83 10 5.72 432 7.78 14 8.31 409 13.71
n25-1 25 8 25.41 718 2002.73 10 29.36 711 T.L. 11 1.53 499 110.18 16 0.00 483 4.57
n25-2 25 8 39.53 825 T.L. 10 33.71 716 T.L. 11 6.53 501 167.98 16 5.36 483 52.12
n25-3 25 8 24.19 603 3463.28 10 22.07 555 4473.84 11 2.93 439 9.87 16 0.00 405 1.31
n25-4 25 8 26.39 683 3530.49 10 30.85 680 T.L. 11 1.70 469 22.28 16 0.22 454 9.50
n25-5 25 8 28.77 721 3720.39 10 32.62 703 T.L. 11 5.54 491 58.72 16 0.00 451 2.87
n30-1 30 9 26.98 877 T.L. 12 31.76 864 T.L. 13 6.11 615 135.27 18 2.58 581 57.35
n30-2 30 9 33.64 927 T.L. 12 35.18 863 T.L. 13 1.25 560 62.06 18 0.00 552 22.12
n30-3 30 9 31.68 812 T.L. 12 40.06 818 T.L. 13 3.46 506 38.78 18 0.00 485 10.41
n30-4 30 9 29.10 756 T.L. 12 25.94 676 T.L. 13 7.75 536 146.89 18 2.60 495 121.43
n30-5 30 9 29.67 756 T.L. 12 33.90 739 T.L. 13 1.03 493 18.35 18 0.97 490 35.32
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Summarizing ...

While working on Autonomous Vehicle Routing is important today (supported by EU
projects), we cannot forget that in the coming years both vehicles and drivers still coexists.

Vehicles and humans have different constraints when designing their duties (routes).

In many situations the integrated vehicle-driver problem is the combination of two VRPs
with some linking variables.

All the experiences and advances on VRPs help to produce better solutions in real-world
applications.

We have shown that optimal solutions for an integrated vehicle-driver problem can be
generated for a regional airline, and then perhaps for other companies too!

We have described two academic vehicle-driver problems for which optimal solutions can
also be generated. Other variants are interesting research challenges for future
investigations.
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