Multi-Trip Vehicle Routing Problems: Variants, Formulations, and Exact Methods
Tutorial - VeRoLog 2019, Seville

R. Roberti
Dept. of Supply Chain Analytics
Vrije Universiteit Amsterdam
June 4, 2019
Introduction

• Most of the literature on the Vehicle Routing Problem (VRP) addresses problems where each vehicle can perform at most one trip per day
• Many contributions on VRPs where vehicles can perform multiple trips have been published in the last decade
• These problems are called Multi-Trip Vehicle Routing Problems (MTVRP)
Introduction

• Most of the literature on the Vehicle Routing Problem (VRP) addresses problems where each vehicle can perform at most one trip per day
• Many contributions on VRPs where vehicles can perform multiple trips have been published in the last decade
• These problems are called Multi-Trip Vehicle Routing Problems (MTVRP)
Introduction

• Most of the literature on the Vehicle Routing Problem (VRP) addresses problems where each vehicle can perform at most one trip per day
• Many contributions on VRPs where vehicles can perform multiple trips have been published in the last decade
• These problems are called Multi-Trip Vehicle Routing Problems (MTVRP)
Motivation

- Such an increasing interest in MTVRPs is due, e.g., to new practices in city logistics and last-mile delivery
- The need of limiting noise and pollution in city centers requires the usage of small vans, electric vehicles, and/or drones and forbids large trucks from entering city centers
- The limited capacity/autonomy of these vehicles force them to perform multiple trips and to return to the depot to reload multiple times over the day
Motivation

- Such an increasing interest in MTVRPs is due, e.g., to new practices in city logistics and last-mile delivery.
- The need of limiting noise and pollution in city centers requires the usage of small vans, electric vehicles, and/or drones and forbids large trucks from entering city centers.
- The limited capacity/autonomy of these vehicles force them to perform multiple trips and to return to the depot to reload multiple times over the day.
Motivation

- Such an increasing interest in MTVRPs is due, e.g., to new practices in city logistics and last-mile delivery
- The need of limiting noise and pollution in city centers requires the usage of small vans, electric vehicles, and/or drones and forbids large trucks from entering city centers
- The limited capacity/autonomy of these vehicles force them to perform multiple trips and to return to the depot to reload multiple times over the day
Main Question of this Tutorial

What is the best model to solve an MTVRP to optimality?

Based on the state-of-the-art exact methods for lots of VRPs...

Set Partitioning Models!
Question

Main Question of this Tutorial
What is the best model to solve an MTVRP to optimality?

Based on the state-of-the-art exact methods for lots of VRPs...

Set Partitioning Models!
Definition of the Multi-Trip VRP I

Input Data

- **N** set of customers
- **V** vertex set, $V = N \cup \{0\}$, where 0 is the depot
- **A** arc set, $A = \{(i,j) \mid i, j \in V : i \neq j\}$
- **G** directed graph, $G = (V, A)$
- **t_{ij}** travel time of arc $(i,j) \in A$
- **K** fleet of identical capacitated vehicles, $|K| = m$
- **q_i** demand of customer $i \in N$
- **Q** vehicle capacity
- **T** length of the planning horizon
Definition of the Multi-Trip VRP II

Definitions

- **A trip** is a sequence of customers, whose total demand does not exceed Q, that can be visited by a vehicle between two visits at the depot and that has a fixed departure time from the depot.

- **A journey** is a sequence of non-overlapping trips assigned to a vehicle whose total travel time does not exceed T.

The MTVRP aims at defining a set of at most m journeys such that:

1. each customer is visited exactly once
2. the total traveled time is minimized
Models with 3- and 4-index Variables

4-index Variables

$x_{ij}^{kh} \in \{0, 1\}$ equal to 1 if trip h of vehicle $k \in K$ traverses arc $(i,j) \in A$ (0 otherwise)

3-index Variables with Vehicle Index (without Trip Index)

$x_{ij}^{k} \in \{0, 1\}$ equal to 1 if vehicle $k \in K$ traverses arc $(i,j) \in A$ (0 otherwise)

3-index Variables with Trip Index (without Vehicle Index)

$x_{ij}^{h} \in \{0, 1\}$ equal to 1 if trip h traverses arc $(i,j) \in A$ (0 otherwise)
Models with 3- and 4-index Variables

4-index Variables

\[x_{ij}^{kh} \in \{0, 1\} \text{ equal to 1 if trip } h \text{ of vehicle } k \in K \text{ traverses arc } (i, j) \in A \text{ (0 otherwise)} \]

3-index Variables with Vehicle Index (without Trip Index)

\[x_{ij}^k \in \{0, 1\} \text{ equal to 1 if vehicle } k \in K \text{ traverses arc } (i, j) \in A \text{ (0 otherwise)} \]

3-index Variables with Trip Index (without Vehicle Index)

\[x_{ij}^h \in \{0, 1\} \text{ equal to 1 if trip } h \text{ traverses arc } (i, j) \in A \text{ (0 otherwise)} \]
Models with 3- and 4-index Variables

4-index Variables

$$x_{ij}^{kh} \in \{0, 1\}$$

equal to 1 if trip h of vehicle $k \in K$ traverses arc $(i, j) \in A$ (0 otherwise)

3-index Variables with Vehicle Index (without Trip Index)

$$x_{ij}^{k} \in \{0, 1\}$$

equal to 1 if vehicle $k \in K$ traverses arc $(i, j) \in A$ (0 otherwise)

3-index Variables with Trip Index (without Vehicle Index)

$$x_{ij}^{h} \in \{0, 1\}$$

equal to 1 if trip h traverses arc $(i, j) \in A$ (0 otherwise)
Models with 3- and 4-index Variables

Pros and Cons

- Polynomial number of variables
- Can be solved with commercial solvers
- Easy to embed additional side constraints

- High integrality gaps
- BigM constraints
- Symmetries in the vehicles
Models with 3- and 4-index Variables

Pros and Cons

- Polynomial number of variables
- Can be solved with commercial solvers
- Easy to embed additional side constraints

- High integrality gaps
- BigM constraints
- Symmetries in the vehicles
2-Index Arc-based Model (Koc and Karaoglan (2011)) I

Variables

\(x_{ij} \in \{0, 1\} \) equal to 1 if arc \((i, j) \in A\) is traversed (0 otherwise)

\(x'_{ij} \in \{0, 1\} \) equal to 1 if a vehicle visits customers \(i, j \in N\) \((i \neq j)\) consecutively with a stop at the depot in between (0 otherwise)

\(\ell_i \in \mathbb{R}_+ \) load on board after visiting customer \(i \in N\)

\(a_i \in \mathbb{R}_+ \) arrival time at customer \(i \in N\)
2-Index Arc-based Model (Koc and Karaoglan (2011)) II

\[
\begin{align*}
\text{min} & \quad \sum_{(i,j) \in A} t_{ij} x_{ij} \\
\text{s.t.} & \quad \sum_{(i,j) \in A} x_{ij} = 1 \quad i \in N \quad \text{[Serve each customer]} \\
& \quad \sum_{(i,j) \in A} x_{ij} = \sum_{(j,i) \in A} x_{ji} \quad i \in V \quad \text{[Flow conservation]} \\
& \quad \ell_i + q_j \leq \ell_j + Q(1 - x_{ij}) \quad i \in N \ j \in V \quad \text{[Subtour + Load on board]} \\
& \quad a_i + t_{ij} \leq a_j + T(1 - x_{ij}) \quad i \in V \ j \in N \quad \text{[Subtour + Arrival time]} \\
& \quad a_i + (t_{i0} + t_{0j}) \leq a_j + T(1 - x'_{ij}) \quad i, j \in N : i \neq j \quad \text{[Arrival time depot visit]} \\
& \quad t_{oi} \leq a_i \leq T - t_{i0} \quad i \in N \quad \text{[Planning horizon]} \\
& \quad \sum_{j \in N} x'_{ij} \leq x_{i0} \quad i \in N \quad \text{[Link x with x']} \\
& \quad \sum_{j \in N} x'_{ij} \leq x_{0j} \quad j \in N \quad \text{[Link x with x']} \\
& \quad \sum_{(0,j) \in A} x_{0j} - \sum_{i,j \in N : i \neq j} x'_{ij} \leq m \quad \text{[Number of vehicles]} \\
& \quad x_{ij} \in \{0, 1\} \quad (i,j) \in A \\
& \quad x'_{ij} \in \{0, 1\} \quad i, j \in N : i \neq j \\
& \quad q_i \leq \ell_i \leq Q, \quad a_i \in \mathbb{R}_+ \quad i \in N \\
\end{align*}
\]
2-Index Arc-based Model (Koc and Karaoglan (2011))

Pros and Cons

- Polynomial number of variables (much fewer than 3- and 4-index models)
- Can be solved with commercial solvers
- Easy to embed side constraints

- High integrality gaps
- BigM constraints
- Instances with 50 customers are already difficult to close
2-Index Arc-based Model (Koc and Karaoglan (2011))

Pros and Cons

- Polynomial number of variables (much fewer than 3- and 4-index models)
- Can be solved with commercial solvers
- Easy to embed side constraints

- High integrality gaps
- BigM constraints
- Instances with 50 customers are already difficult to close
Triplet-based Model (Mingozzi, Roberti, and Toth (2013))

- \mathcal{H} set of all feasible trips
- c_h cost of trip $h \in \mathcal{H}$
- α_{ih} trip $h \in \mathcal{H}$ serves customer $i \in N$ ($\alpha_{ih} = 1$) or not ($\alpha_{ih} = 0$)
- d_h duration of trip $h \in \mathcal{H}$

Variables

- \(x_{hk} \in \{0, 1\} \) trip $h \in \mathcal{H}$ is assigned to vehicle $k \in K$ ($x_{hk} = 1$) or not ($x_{hk} = 0$)

\[
\begin{align*}
\min & \quad \sum_{h \in \mathcal{H}} \sum_{k \in K} c_h x_{hk} & \text{[Minimize travel costs]} \quad (2a) \\
\text{s.t.} & \quad \sum_{h \in \mathcal{H}} \sum_{k \in K} \alpha_{ih} x_{hk} = 1 & i \in N \quad \text{[Serve each customer]} \quad (2b) \\
& \quad \sum_{h \in \mathcal{H}} d_h x_{hk} \leq T & k \in K \quad \text{[Planning horizon]} \quad (2c) \\
& \quad x_{hk} \in \{0, 1\} & h \in \mathcal{H} \quad k \in K \quad (2d)
\end{align*}
\]
Trip-based Model (Mingozzi, Roberti, and Toth (2013))

\[\mathcal{H} \] set of all feasible trips
\[c_h \] cost of trip \(h \in \mathcal{H} \)
\[\alpha_{ih} \] trip \(h \in \mathcal{H} \) serves customer \(i \in N \) (\(\alpha_{ih} = 1 \)) or not (\(\alpha_{ih} = 0 \))
\[d_h \] duration of trip \(h \in \mathcal{H} \)

Variables

\[x_{hk} \in \{0, 1\} \] trip \(h \in \mathcal{H} \) is assigned to vehicle \(k \in K \) (\(x_{hk} = 1 \)) or not (\(x_{hk} = 0 \))

\[
\begin{align*}
\text{min} & \quad \sum_{h \in \mathcal{H}} c_h \sum_{k \in K} x_{hk} & \text{[Minimize travel costs]} \quad (2a) \\
\text{s.t.} & \quad \sum_{h \in \mathcal{H}} \sum_{k \in K} \alpha_{ih} x_{hk} = 1 & i \in N \quad \text{[Serve each customer]} \quad (2b) \\
& \quad \sum_{h \in \mathcal{H}} d_h x_{hk} \leq T & k \in K \quad \text{[Planning horizon]} \quad (2c) \\
& x_{hk} \in \{0, 1\} & h \in \mathcal{H} \quad k \in K \quad (2d)
\end{align*}
\]
Trip-based Model (Mingozzi, Roberti, and Toth (2013))

- \mathcal{H}: set of all feasible trips
- c_h: cost of trip $h \in \mathcal{H}$
- α_{ih}: trip $h \in \mathcal{H}$ serves customer $i \in N$ ($\alpha_{ih} = 1$) or not ($\alpha_{ih} = 0$)
- d_h: duration of trip $h \in \mathcal{H}$

Variables

$x_{hk} \in \{0, 1\}$: trip $h \in \mathcal{H}$ is assigned to vehicle $k \in K$ ($x_{hk} = 1$) or not ($x_{hk} = 0$)

\[
\begin{align*}
\min & \quad \sum_{h \in \mathcal{H}} c_h \sum_{k \in K} x_{hk} \\
\text{s.t.} & \quad \sum_{h \in \mathcal{H}} \sum_{k \in K} \alpha_{ih} x_{hk} = 1 \quad i \in N \\
& \quad \sum_{h \in \mathcal{H}} d_h x_{hk} \leq T \quad k \in K \\
& \quad x_{hk} \in \{0, 1\} \quad h \in \mathcal{H} \quad k \in K
\end{align*}
\]

[Minimize travel costs] (2a)

[Serve each customer] (2b)

[Planning horizon] (2c)

(2d)
Trip-based Model (Mingoazzi, Roberti, and Toth (2013))

Pros and Cons

- Small integrality gaps
- Instances with 100-120 customers can be closed
- Easy to embed side constraints

- Exponential number of variables
- Symmetries in the vehicles
- Column generation/branch(-and-cut)-and-price needed
- Additional constraints can make the pricing problem difficult
Trip-based Model (Mingoizzi, Roberti, and Toth (2013))

Pros and Cons

- Small integrality gaps
- Instances with 100-120 customers can be closed
- Easy to embed side constraints

- Exponential number of variables
- Symmetries in the vehicles
- Column generation/branch(-and-cut)-and-price needed
- Additional constraints can make the pricing problem difficult
Mathematical Models for the MTVRP

Journey-based Model (Mingozzi, Roberti, and Toth (2013))

\(\mathcal{R} \) set of all feasible journeys

\(c_r \) cost of journey \(r \in \mathcal{R} \)

\(\alpha_{ir} \) journey \(r \in \mathcal{R} \) serves customer \(i \in N \) (\(\alpha_{ir} = 1 \)) or not (\(\alpha_{ir} = 0 \))

Variables

\(x_r \in \{0, 1\} \) journey \(r \in \mathcal{R} \) is selected (\(x_r = 1 \)) or not (\(x_r = 0 \))

\[
\begin{align*}
\min & \quad \sum_{r \in \mathcal{R}} c_r x_r & \text{[Minimize travel costs]} \\
\text{s.t.} & \quad \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 & i \in N & \text{[Serve each customer]} \\
& \quad \sum_{r \in \mathcal{R}} x_r \leq m & & \text{[Number of vehicles]} \\
& \quad x_r \in \{0, 1\} & r \in \mathcal{R} & \text{[3d]}
\end{align*}
\]
Journey-based Model (Mingozzi, Roberti, and Toth (2013))

\[R \] set of all feasible journeys

\[c_r \] cost of journey \(r \in R \)

\[\alpha_{ir} \] journey \(r \in R \) serves customer \(i \in N \) (\(\alpha_{ir} = 1 \)) or not (\(\alpha_{ir} = 0 \))

Variables

\[x_r \in \{0, 1\} \] journey \(r \in R \) is selected (\(x_r = 1 \)) or not (\(x_r = 0 \))

\[
\begin{align*}
\text{min} & \sum_{r \in R} c_r x_r & \text{[Minimize travel costs]} \quad (3a) \\
\text{s.t.} & \sum_{r \in R} \alpha_{ir} x_r = 1 \quad i \in N & \text{[Serve each customer]} \quad (3b) \\
& \sum_{r \in R} x_r \leq m & \text{[Number of vehicles]} \quad (3c) \\
& x_r \in \{0, 1\} \quad r \in R & \quad (3d)
\end{align*}
\]
Journey-based Model (Mingozzi, Roberti, and Toth (2013))

\(\mathcal{R} \) set of all feasible journeys

\(c_r \) cost of journey \(r \in \mathcal{R} \)

\(\alpha_{ir} \) journey \(r \in \mathcal{R} \) serves customer \(i \in N \) \((\alpha_{ir} = 1) \) or not \((\alpha_{ir} = 0) \)

Variables

\(x_r \in \{0, 1\} \) journey \(r \in \mathcal{R} \) is selected \((x_r = 1) \) or not \((x_r = 0) \)

\[
\min \sum_{r \in \mathcal{R}} c_r x_r \quad \text{[Minimize travel costs]} \tag{3a}
\]

\[
\text{s.t.} \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 \quad i \in N \quad \text{[Serve each customer]} \tag{3b}
\]

\[
\sum_{r \in \mathcal{R}} x_r \leq m \quad \text{[Number of vehicles]} \tag{3c}
\]

\[
x_r \in \{0, 1\} \quad r \in \mathcal{R} \quad \tag{3d}
\]
Journey-based Model (Mingozzi, Roberti, and Toth (2013))

Pros and Cons

- Small integrality gaps (smaller than trip-based model)
- Instances with 100-120 customers can be closed
- Easy to embed additional side constraints

- Exponential number of variables
- Column generation/branch(and-cut)-and-price needed
- Pricing problem more difficult than trip-based model
- Additional constraints can make the pricing problem (even more) difficult
Journey-based Model (Mingozzi, Roberti, and Toth (2013))

Pros and Cons

- Small integrality gaps (smaller than trip-based model)
- Instances with 100-120 customers can be closed
- Easy to embed additional side constraints

- Exponential number of variables
- Column generation/branch(and-cut)-and-price needed
- Pricing problem more difficult than trip-based model
- Additional constraints can make the pricing problem (even more) difficult
Main Side Constraints and Academic Extensions

- **Time Windows**: each customer $i \in N$ must be visited within a time interval $[a_i, b_i]$
- **Service-Dependent Loading Times**: vehicle loading time at the depot depends on the customers visited in the next trip
- **Limited Trip Duration**: maximum time between the departure from the depot and the arrival time at the last customer of the trip
- **Profits**: a profit p_i is associated with each customer $i \in N$; hierarchical objective function: maximize profit first; minimize routing cost second
Main Side Constraints and Academic Extensions

- **Time Windows**: each customer $i \in N$ must be visited within a time interval $[a_i, b_i]$
- **Service-Dependent Loading Times**: vehicle loading time at the depot depends on the customers visited in the next trip
- **Limited Trip Duration**: maximum time between the departure from the depot and the arrival time at the last customer of the trip
- **Profits**: a profit p_i is associated with each customer $i \in N$; hierarchical objective function: maximize profit first; minimize routing cost second
Main Side Constraints and Academic Extensions

- **Time Windows**: each customer $i \in N$ must be visited within a time interval $[a_i, b_i]$
- **Service-Dependent Loading Times**: vehicle loading time at the depot depends on the customers visited in the next trip
- **Limited Trip Duration**: maximum time between the departure from the depot and the arrival time at the last customer of the trip
- **Profits**: a profit p_i is associated with each customer $i \in N$; hierarchical objective function: maximize profit first; minimize routing cost second
Main Side Constraints and Academic Extensions

- **Time Windows**: each customer $i \in N$ must be visited within a time interval $[a_i, b_i]$
- **Service-Dependent Loading Times**: vehicle loading time at the depot depends on the customers visited in the next trip
- **Limited Trip Duration**: maximum time between the departure from the depot and the arrival time at the last customer of the trip
- **Profits**: a profit p_i is associated with each customer $i \in N$; hierarchical objective function: maximize profit first; minimize routing cost second
Variants of the MTVRP

Main Side Constraints and Academic Extensions

<table>
<thead>
<tr>
<th>Reference</th>
<th>Time Windows</th>
<th>Service-Dependent Loading Times</th>
<th>Limited Trip Duration</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azi, Gendreau, and Potvin (2010)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Macedo et al. (2011)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hernandez et al. (2014)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hernandez et al. (2016)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heuristic Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azi, Gendreau, and Potvin (2014)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wang, Liang, and Hu (2014)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cattaruzza, Absi, and Feillet (2016a)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaya-Arenas et al. (2016)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Cattaruzza, Absi, and Feillet (2016b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trip-based Model (Hernandez et al. (2016))

- \mathcal{H}: set of all feasible trips
- c_h: cost of trip $h \in \mathcal{H}$
- α_{ih}: trip $h \in \mathcal{H}$ serves customer $i \in N$ ($\alpha_{ih} = 1$) or not ($\alpha_{ih} = 0$)
- τ_{th}: trip $h \in \mathcal{H}$ is active at time $t \in [a_0, b_0]$ ($\tau_{th} = 1$) or not ($\tau_{th} = 0$)

Variables

- $x_h \in \{0, 1\}$: trip $h \in \mathcal{H}$ is selected ($x_h = 1$) or not ($x_h = 0$)

Objective Function

\[
\min \sum_{h \in \mathcal{H}} c_h x_h
\]

[Minimize travel costs] (4a)

Constraints

\[
\sum_{h \in \mathcal{H}} \alpha_{ih} x_h = 1 \quad i \in N
\]

[Serve each customer] (4b)

\[
\sum_{h \in \mathcal{H}} \tau_{th} x_h \leq m \quad t \in [a_0, b_0]
\]

[No overlaps] (4c)

\[
x_h \in \{0, 1\} \quad h \in \mathcal{H}
\]

(4d)
Trip-based Model (Hernandez et al. (2016))

- \mathcal{H}: set of all feasible trips
- c_h: cost of trip $h \in \mathcal{H}$
- α_{ih}: trip $h \in \mathcal{H}$ serves customer $i \in N$ ($\alpha_{ih} = 1$) or not ($\alpha_{ih} = 0$)
- τ_{th}: trip $h \in \mathcal{H}$ is active at time $t \in [a_0, b_0]$ ($\tau_{th} = 1$) or not ($\tau_{th} = 0$)

Variables

- $x_h \in \{0, 1\}$: trip $h \in \mathcal{H}$ is selected ($x_h = 1$) or not ($x_h = 0$)

Formulation

\[
\begin{align*}
\text{min} & \quad \sum_{h \in \mathcal{H}} c_h x_h & \quad \text{[Minimize travel costs]} \quad (4a) \\
\text{s.t.} & \quad \sum_{h \in \mathcal{H}} \alpha_{ih} x_h = 1 & i \in N & \quad \text{[Serve each customer]} \quad (4b) \\
& \quad \sum_{h \in \mathcal{H}} \tau_{th} x_h \leq m & t \in [a_0, b_0] & \quad \text{[No overlaps]} \quad (4c) \\
& \quad x_h \in \{0, 1\} & h \in \mathcal{H} & \quad (4d)
\end{align*}
\]
Mathematical Models for Variants of the MTVRP

Trip-based Model (Hernandez et al. (2016))

\(\mathcal{H} \) set of all feasible trips

\(c_h \) cost of trip \(h \in \mathcal{H} \)

\(\alpha_{ih} \) trip \(h \in \mathcal{H} \) serves customer \(i \in N \) (\(\alpha_{ih} = 1 \)) or not (\(\alpha_{ih} = 0 \))

\(\tau_{th} \) trip \(h \in \mathcal{H} \) is active at time \(t \in [a_0, b_0] \) (\(\tau_{th} = 1 \)) or not (\(\tau_{th} = 0 \))

Variables

\(x_h \in \{0, 1\} \) trip \(h \in \mathcal{H} \) is selected (\(x_h = 1 \)) or not (\(x_h = 0 \))

\[
\begin{align*}
\min \sum_{h \in \mathcal{H}} c_h x_h & \quad [\text{Minimize travel costs}] \quad (4a) \\
\text{s.t.} \sum_{h \in \mathcal{H}} \alpha_{ih} x_h = 1 & \quad i \in N \quad [\text{Serve each customer}] \quad (4b) \\
\sum_{h \in \mathcal{H}} \tau_{th} x_h \leq m & \quad t \in [a_0, b_0] \quad [\text{No overlaps}] \quad (4c) \\
x_h \in \{0, 1\} & \quad h \in \mathcal{H} \quad (4d)
\end{align*}
\]
Trip-based Model (Hernandez et al. (2016))

Pros and Cons

- Small integrality gaps
- Easy to embed additional side constraints defining the feasibility of the trips

- Exponential number of variables
- Column generation/branch(-and-cut)-and-price needed
- Side constraints make the pricing problem difficult
- Constraints (4c) to add in a cutting plane fashion
- Instances with 25 customers can be out of reach
Mathematical Models for Variants of the MTVRP

Trip-based Model (Hernandez et al. (2016))

Pros and Cons

- Small integrality gaps
- Easy to embed additional side constraints defining the feasibility of the trips

- Exponential number of variables
- Column generation/branch(-and-cut)-and-price needed
- Side constraints make the pricing problem difficult
- Constraints (4c) to add in a cutting plane fashion
- Instances with 25 customers can be out of reach
Journey-based Model (Hernandez et al. (2014, 2016))

- \(\mathcal{R} \): set of all feasible journeys
- \(c_r \): cost of journey \(r \in \mathcal{R} \)
- \(\alpha_{ir} \): journey \(r \in \mathcal{R} \) serves customer \(i \in N \) (\(\alpha_{ir} = 1 \)) or not (\(\alpha_{ir} = 0 \))

Variables

- \(x_r \in \{0, 1\} \): journey \(r \in \mathcal{R} \) is selected (\(x_r = 1 \)) or not (\(x_r = 0 \))

\[
\begin{align*}
\min & \quad \sum_{r \in \mathcal{R}} c_r x_r \quad \text{[Minimize travel costs]} \quad (5a) \\
\text{s.t.} & \quad \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 \quad i \in N \quad \text{[Serve each customer]} \quad (5b) \\
& \quad \sum_{r \in \mathcal{R}} x_r \leq m \quad \text{[Number of vehicles]} \quad (5c) \\
& \quad x_r \in \{0, 1\} \quad r \in \mathcal{R} \quad (5d)
\end{align*}
\]
Journey-based Model (Hernandez et al. (2014, 2016))

\(\mathcal{R} \) set of all feasible journeys \\
\(c_r \) cost of journey \(r \in \mathcal{R} \) \\
\(\alpha_{ir} \) journey \(r \in \mathcal{R} \) serves customer \(i \in N \) (\(\alpha_{ir} = 1 \)) or not (\(\alpha_{ir} = 0 \))

Variables

\(x_r \in \{0, 1\} \) journey \(r \in \mathcal{R} \) is selected (\(x_r = 1 \)) or not (\(x_r = 0 \))

\[
\begin{align*}
\min & \sum_{r \in \mathcal{R}} c_r x_r & & \text{[Minimize travel costs]} \\
\text{s.t.} & \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 & i \in N & \text{[Serve each customer]} \\
& \sum_{r \in \mathcal{R}} x_r \leq m & & \text{[Number of vehicles]} \\
& x_r \in \{0, 1\} & r \in \mathcal{R} & \text{(5d)}
\end{align*}
\]
Journey-based Model (Hernandez et al. (2014, 2016))

\[\mathcal{R} \text{ set of all feasible journeys} \]
\[c_r \text{ cost of journey } r \in \mathcal{R} \]
\[\alpha_{ir} \text{ journey } r \in \mathcal{R} \text{ serves customer } i \in N (\alpha_{ir} = 1) \text{ or not } (\alpha_{ir} = 0) \]

Variables

\[x_r \in \{0, 1\} \text{ journey } r \in \mathcal{R} \text{ is selected } (x_r = 1) \text{ or not } (x_r = 0) \]

\[
\begin{align*}
\min & \sum_{r \in \mathcal{R}} c_r x_r & \text{[Minimize travel costs]} \\
\text{s.t.} & \sum_{r \in \mathcal{R}} \alpha_{ir} x_r = 1 & i \in N \text{ [Serve each customer]} \\
& \sum_{r \in \mathcal{R}} x_r \leq m & \text{[Number of vehicles]} \\
& x_r \in \{0, 1\} & r \in \mathcal{R} \text{ (5d)}
\end{align*}
\]
Journey-based Model (Hernandez et al. (2014, 2016))

Pros and Cons

- Small integrality gaps (smaller than trip-based model)
- Easy to embed additional side constraints both related to trips and journeys

- Exponential number of variables
- Column generation/branch(and-cut)-and-price needed
- Pricing problem more difficult than trip-based model
- Instances with 25 customers can be out of reach
Journey-based Model (Hernandez et al. (2014, 2016))

Pros and Cons

- Small integrality gaps (smaller than trip-based model)
- Easy to embed additional side constraints both related to trips and journeys
- Exponential number of variables
- Column generation/branch(and-cut)-and-price needed
- Pricing problem more difficult than trip-based model
- Instances with 25 customers can be out of reach
The Concept of Structure

Definition of Structure

A structure \(s = (0, i_1, i_2, \ldots, i_{\mu_s}, 0) \) is an ordered set of \(\mu_s \) customers that can be visited in between two visits at the depot and can start from the depot within time interval \([e_s, \ell_s]\), such that:

1. capacity constraints are satisfied
2. the duration \(d_s \) and the cost \(c_s \) are constant for each departure time from the depot within \([e_s, \ell_s]\)
3. the duration \(d_s \) is the minimum duration to serve the set of customers in the given order

\[
\begin{align*}
9:00 & \quad 9:10 & \quad 9:25 & \quad 9:38 & \quad 9:45 & \quad 9:52 \\
\text{D} & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad \text{D} \\
9:01 & \quad 9:11 & \quad 9:26 & \quad 9:39 & \quad 9:46 & \quad 9:53 \\
\text{D} & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad \text{D} \\
9:02 & \quad 9:12 & \quad 9:27 & \quad 9:40 & \quad 9:47 & \quad 9:54 \\
\text{D} & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad \text{D}
\end{align*}
\]

\[
\begin{align*}
9:00..9:02 & \quad 9:25..9:27 & \quad 9:45..9:47 \\
\text{D} & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad \text{D} \\
9:10..9:12 & \quad 9:38..9:40 & \quad 9:52..9:54
\end{align*}
\]
Structure-based Model (Paradiso et al. (2019))

- \mathcal{S} set of all feasible structures
- c_s cost of structure $s \in \mathcal{S}$
- α_{is} structure $s \in \mathcal{S}$ serves $i \in \mathcal{N}$ ($\alpha_{is} = 1$) or not ($\alpha_{is} = 0$)

Variables

- $x_s \in \{0, 1\}$ structure $s \in \mathcal{S}$ is selected ($x_s = 1$) or not ($x_s = 0$)

\[
\begin{align*}
\min & \quad \sum_{s \in \mathcal{S}} c_s x_s \quad \text{[Minimize travel costs]} \\
\text{s.t.} & \quad \sum_{s \in \mathcal{S}} \alpha_{is} x_s = 1 \quad i \in \mathcal{N} \quad \text{[Serve each customer]} \\
& \quad \sum_{s \in \mathcal{S}} x_s \leq \eta_m(\mathcal{\hat{S}}) \quad \mathcal{\hat{S}} \subseteq \mathcal{S} \quad \text{[Structure feasibility constraints]} \\
& \quad x_s \in \{0, 1\} \quad s \in \mathcal{S} \quad \text{(6d)}
\end{align*}
\]

where $\eta_m(\mathcal{\hat{S}})$ is the maximum number of structures of the set $\mathcal{\hat{S}}$ that can be simultaneously in a solution given the number of vehicles m
Structure-based Model (Paradiso et al. (2019))

\[S \] set of all feasible structures

\[c_s \] cost of structure \(s \in S \)

\[\alpha_{is} \] structure \(s \in S \) serves \(i \in N \) (\(\alpha_{is} = 1 \)) or not (\(\alpha_{is} = 0 \))

Variables

\[x_s \in \{0, 1\} \] structure \(s \in S \) is selected (\(x_s = 1 \)) or not (\(x_s = 0 \))

\[
\begin{align*}
\min & \quad \sum_{s \in S} c_s x_s \quad & \text{[Minimize travel costs]} \\
\text{s.t.} & \quad \sum_{s \in \hat{S}} \alpha_{is} x_s = 1 \quad i \in N \quad & \text{[Serve each customer]} \\
& \quad \sum_{s \in \hat{S}} x_s \leq \eta_m(\hat{S}) \quad \hat{S} \subseteq S \quad & \text{[Structure feasibility constraints]} \\
& \quad x_s \in \{0, 1\} \quad s \in S \quad & (6d)
\end{align*}
\]

where \(\eta_m(\hat{S}) \) is the maximum number of structures of the set \(\hat{S} \) that can be simultaneously in a solution given the number of vehicles \(m \).
Mathematical Models for Variants of the MTVRP

Structure-based Model (Paradiso et al. (2019))

\(\mathcal{S} \) set of all feasible structures
\(c_s \) cost of structure \(s \in \mathcal{S} \)
\(\alpha_{is} \) structure \(s \in \mathcal{S} \) serves \(i \in \mathcal{N} \) \((\alpha_{is} = 1) \) or not \((\alpha_{is} = 0) \)

Variables

\(x_s \in \{0, 1\} \) structure \(s \in \mathcal{S} \) is selected \((x_s = 1) \) or not \((x_s = 0) \)

\[
\begin{align*}
\min & \sum_{s \in \mathcal{S}} c_s x_s \quad \text{[Minimize travel costs]} \\
\text{s.t.} & \sum_{s \in \mathcal{S}} \alpha_{is} x_s = 1 \quad i \in \mathcal{N} \quad \text{[Serve each customer]} \\
& \sum_{s \in \hat{\mathcal{S}}} x_s \leq \eta_m(\hat{\mathcal{S}}) \quad \hat{\mathcal{S}} \subseteq \mathcal{S} \quad \text{[Structure feasibility constraints]} \\
& x_s \in \{0, 1\} \quad s \in \mathcal{S} \quad \text{(6d)}
\end{align*}
\]

where \(\eta_m(\hat{\mathcal{S}}) \) is the maximum number of structures of the set \(\hat{\mathcal{S}} \) that can be simultaneously in a solution given the number of vehicles \(m \)
Structure-based Model (Paradiso et al. (2019))
Pros and Cons

- Small integrality gaps
- Easy to embed additional side constraints related to trips
- Fewer variables than trip-based (and journey-based) model

- Exponential number of variables
- Column generation/branch(-and-cut)-and-price needed
- Constraints (6c) to add in a cutting plane fashion
Structure-based Model (Paradiso et al. (2019))

Pros and Cons

- Small integrality gaps
- Easy to embed additional side constraints related to trips
- Fewer variables than trip-based (and journey-based) model

- Exponential number of variables
- Column generation/branch(-and-cut)-and-price needed
- Constraints (6c) to add in a cutting plane fashion
Trip vs Journey vs Structure (-based Models)

<table>
<thead>
<tr>
<th></th>
<th>Trip</th>
<th>Journey</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrality gap</td>
<td>![thumbs_up]</td>
<td>![thumbs_up]</td>
<td></td>
</tr>
<tr>
<td>Number of variables</td>
<td>![thumbs_down]</td>
<td>![thumbs_down]</td>
<td>![thumbs_down]</td>
</tr>
<tr>
<td>Number of constraints</td>
<td>![thumbs_down]</td>
<td>![thumbs_up]</td>
<td>![thumbs_down]</td>
</tr>
<tr>
<td>Trip-related constraints</td>
<td>![thumbs_up]</td>
<td>![thumbs_up]</td>
<td>![thumbs_up]</td>
</tr>
<tr>
<td>Journey-related constraints</td>
<td>![thumbs_down]</td>
<td>![thumbs_up]</td>
<td>![thumbs_down]</td>
</tr>
<tr>
<td>Complexity of algorithms</td>
<td>![thumbs_down]</td>
<td>![thumbs_down]</td>
<td>![thumbs_down]</td>
</tr>
</tbody>
</table>
Computational Results

MTVRP with Time Windows, Loading Times

| Group | |N| | Inst | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} |
|-------|-----|-----|-----|------|-----|------|-----|-----|------|-----|-----|------|
| | Trip-based | Journey-based | Structure-based |
| | Intel Core i7 2670QM | Intel Core i7 2670QM | Virtual CPU 2.59GHz |
| C | 25 | 8 | 2.24 | 8 | 108 | 2.12 | 7 | 805 | 0.73 | 8 | 19 |
| R | 25 | 11 | 2.41 | 11 | 646 | 1.19 | 7 | 6,925 | 0.78 | 11 | 115 |
| RC | 25 | 8 | 5.41 | 6 | 6,671 | 2.86 | 5 | 2,963 | 1.91 | 8 | 880 |
| C | 40 | 8 | 1.51 | 7 | 2,170 | 1.51 | 7 | 2,170 |
| R | 40 | 11 | 0.41 | 10 | 418 | 0.41 | 10 | 418 |
| RC | 40 | 8 | 0.83 | 8 | 872 | 0.83 | 8 | 872 |
| C | 50 | 8 | 1.41 | 3 | 3,577 | 1.41 | 3 | 3,577 |
| R | 50 | 11 | - | 0 | - | - | - | - |
| RC | 50 | 8 | 0.59 | 7 | 312 | 0.59 | 7 | 312 |
Computational Results

MTVRP with Time Windows, Loading Times

| Group | $|N|$ | Inst | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} |
|-------|-----|------|------|-----|---------|------|-----|---------|------|-----|---------|
| C | 25 | 8 | 2.24 | 8 | 108 | 2.12 | 7 | 805 | 0.73 | 8 | 19 |
| R | 25 | 11 | 2.41 | 11 | 646 | 1.19 | 7 | 6,925 | 0.78 | 11 | 115 |
| RC | 25 | 8 | 5.41 | 6 | 6,671 | 2.86 | 5 | 2,963 | 1.91 | 8 | 880 |
| C | 40 | 8 | | | | 1.51 | 7 | 2,170 | | | |
| R | 40 | 11 | | | | 0.41 | 10 | 418 | | | |
| RC | 40 | 8 | | | | 0.83 | 8 | 872 | | | |
| C | 50 | 8 | | | | 1.41 | 3 | 3,577 | | | |
| R | 50 | 11 | | | | | 0 | | | | |
| RC | 50 | 8 | | | | 0.59 | 7 | 312 | | | |
Computational Results

MTVRP with Time Windows, Loading Times

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>N</th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hernandez et al. (2016)</td>
<td>Intel Core i7 2670QM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>8</td>
<td>2.24</td>
<td>8</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>11</td>
<td>2.41</td>
<td>11</td>
<td>646</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>25</td>
<td>8</td>
<td>5.41</td>
<td>6</td>
<td>6,671</td>
<td></td>
</tr>
<tr>
<td>Journey-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hernandez et al. (2016)</td>
<td>Intel Core i7 2670QM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>8</td>
<td>1.51</td>
<td>7</td>
<td>2,170</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td>11</td>
<td>0.41</td>
<td>10</td>
<td>418</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>40</td>
<td>8</td>
<td>0.83</td>
<td>8</td>
<td>872</td>
<td></td>
</tr>
<tr>
<td>Structure-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradiso et al. (2019)</td>
<td>Virtual CPU 2.59GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>8</td>
<td>1.41</td>
<td>3</td>
<td>3,577</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>50</td>
<td>11</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>50</td>
<td>8</td>
<td>0.59</td>
<td>7</td>
<td>312</td>
<td></td>
</tr>
</tbody>
</table>
Computational Results

MTVRP with Time Windows, Loading Times

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>N</th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T_tot</th>
<th>%Gap</th>
<th>Opt</th>
<th>T_tot</th>
<th>%Gap</th>
<th>Opt</th>
<th>T_tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip-based</td>
<td></td>
</tr>
<tr>
<td>Hernandez et al. (2016)</td>
<td></td>
</tr>
<tr>
<td>Intel Core i7 2670QM</td>
<td></td>
</tr>
<tr>
<td>Journey-based</td>
<td></td>
</tr>
<tr>
<td>Hernandez et al. (2016)</td>
<td></td>
</tr>
<tr>
<td>Intel Core i7 2670QM</td>
<td></td>
</tr>
<tr>
<td>Structure-based</td>
<td></td>
</tr>
<tr>
<td>Paradiso et al. (2019)</td>
<td></td>
</tr>
<tr>
<td>Virtual CPU 2.59GHz</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>8</td>
<td>2.24</td>
<td>8</td>
<td>108</td>
<td>2.12</td>
<td>7</td>
<td>805</td>
<td>0.73</td>
<td>8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>11</td>
<td>2.41</td>
<td>11</td>
<td>646</td>
<td>1.19</td>
<td>7</td>
<td>6,925</td>
<td>0.78</td>
<td>11</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>25</td>
<td>8</td>
<td>5.41</td>
<td>6</td>
<td>6,671</td>
<td>2.86</td>
<td>5</td>
<td>2,963</td>
<td>1.91</td>
<td>8</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.51</td>
<td>7</td>
<td>2,170</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.41</td>
<td>10</td>
<td>418</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>40</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.83</td>
<td>8</td>
<td>872</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>3</td>
<td>3,577</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>50</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>50</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.59</td>
<td>7</td>
<td>312</td>
<td></td>
</tr>
</tbody>
</table>

R. Roberti
Multi-Trip Vehicle Routing Problems
26 / 31
Computational Results

MTVRP with Time Windows, Loading Times

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
<th></th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
<th></th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>25</td>
<td>8</td>
<td>2.24</td>
<td>8</td>
<td>108</td>
<td></td>
<td>21.2</td>
<td>7</td>
<td>805</td>
<td></td>
<td>0.73</td>
<td>8</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>11</td>
<td>2.41</td>
<td>11</td>
<td>646</td>
<td></td>
<td>1.19</td>
<td>7</td>
<td>6,925</td>
<td></td>
<td>0.78</td>
<td>11</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>25</td>
<td>8</td>
<td>5.41</td>
<td>6</td>
<td>6,671</td>
<td></td>
<td>2.86</td>
<td>5</td>
<td>2,963</td>
<td></td>
<td>1.91</td>
<td>8</td>
<td>880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>8</td>
<td>5.41</td>
<td>6</td>
<td>6,671</td>
<td></td>
<td>0.73</td>
<td>8</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td>11</td>
<td>0.41</td>
<td>10</td>
<td>418</td>
<td></td>
<td>0.41</td>
<td>10</td>
<td>418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>40</td>
<td>8</td>
<td>0.83</td>
<td>8</td>
<td>872</td>
<td></td>
<td>0.83</td>
<td>8</td>
<td>872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>8</td>
<td>1.41</td>
<td>3</td>
<td>3,577</td>
<td></td>
<td>1.41</td>
<td>3</td>
<td>3,577</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>50</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>312</td>
<td></td>
<td>0.59</td>
<td>7</td>
<td>312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>50</td>
<td>8</td>
<td>0.59</td>
<td>7</td>
<td>312</td>
<td></td>
<td>0.59</td>
<td>7</td>
<td>312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intel Core i7 2670QM Virtual CPU 2.59GHz
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

| Group | \(|N|\) | Inst | %Gap | Opt | \(T_{\text{tot}}\) | %Gap | Opt | \(T_{\text{tot}}\) |
|-------|--------|------|------|-----|----------------|------|-----|----------------|
| | | Trip-based | Structure-based |
| | | Hernandez et al. (2014) | Intel Core 2 Duo 2.10GHz | Paradiso et al. (2019) | Virtual CPU 2.59GHz |
| C | 25 | 1.91 | 16 | 420 | 0.38 | 16 | 14 |
| R | 25 | 0.76 | 22 | 33 | 0.25 | 22 | 2 |
| RC | 25 | 2.35 | 11 | 18 | 0.49 | 16 | 2 |
| C | 40 | 1.25 | 13 | 511 | 0.48 | 16 | 151 |
| R | 40 | 1.43 | 12 | 1,738 | 1.06 | 19 | 220 |
| RC | 40 | - | 0 | - | 0.67 | 2 | 11 |
| C | 50 | 0.22 | 16 | 62 | 0.22 | 16 | 62 |
| R | 50 | 0.22 | 22 | 20 | 0.28 | 16 | 11 |
| RC | 50 | 0.28 | 16 | 11 |
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>N</th>
<th></th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
<th>%Gap</th>
<th>Opt</th>
<th>T<sub>tot</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trip-based</td>
<td>Structure-based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hernandez et al. (2014)</td>
<td>Paradiso et al. (2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intel Core 2 Duo 2.10GHz</td>
<td>Virtual CPU 2.59GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>16</td>
<td>1.91</td>
<td>16</td>
<td>420</td>
<td>0.38</td>
<td>16</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>22</td>
<td>0.76</td>
<td>22</td>
<td>33</td>
<td>0.25</td>
<td>22</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>25</td>
<td>16</td>
<td>2.35</td>
<td>11</td>
<td>18</td>
<td>0.49</td>
<td>16</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>16</td>
<td>1.25</td>
<td>13</td>
<td>511</td>
<td>0.48</td>
<td>16</td>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td>19</td>
<td>1.43</td>
<td>12</td>
<td>1,738</td>
<td>1.06</td>
<td>19</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>40</td>
<td>2</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.67</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>16</td>
<td>0.22</td>
<td>16</td>
<td>62</td>
<td>0.22</td>
<td>16</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>50</td>
<td>22</td>
<td>0.22</td>
<td>22</td>
<td>20</td>
<td>0.22</td>
<td>22</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>50</td>
<td>16</td>
<td>0.28</td>
<td>16</td>
<td>11</td>
<td>0.28</td>
<td>16</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th>N</th>
<th></th>
<th>Inst</th>
<th>%Gap</th>
<th>Opt</th>
<th>T\textsubscript{tot}</th>
<th>%Gap</th>
<th>Opt</th>
<th>T\textsubscript{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>25</td>
<td>16</td>
<td>1.91</td>
<td>16</td>
<td>420</td>
<td>0.38</td>
<td>16</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>22</td>
<td>0.76</td>
<td>22</td>
<td>33</td>
<td>0.25</td>
<td>22</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>25</td>
<td>16</td>
<td>2.35</td>
<td>11</td>
<td>18</td>
<td>0.49</td>
<td>16</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>16</td>
<td>1.25</td>
<td>13</td>
<td>511</td>
<td>0.48</td>
<td>16</td>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td>19</td>
<td>1.43</td>
<td>12</td>
<td>1,738</td>
<td>1.06</td>
<td>19</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>40</td>
<td>2</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.67</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>16</td>
<td>0.22</td>
<td>16</td>
<td>62</td>
<td>0.22</td>
<td>16</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>50</td>
<td>22</td>
<td>0.22</td>
<td>22</td>
<td>20</td>
<td>0.22</td>
<td>22</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>50</td>
<td>16</td>
<td>0.28</td>
<td>16</td>
<td>11</td>
<td>0.28</td>
<td>16</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hernandez et al. (2014)

Paradiso et al. (2019)

Intel Core 2 Duo 2.10GHz

Virtual CPU 2.59GHz
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

| Group | $|N|$ | Inst | %Gap | Opt | T_{tot} | %Gap | Opt | T_{tot} |
|-------|-----|------|------|-----|----------|------|-----|----------|
| Trip-based | | | Hernandez et al. (2014) | Intel Core 2 Duo 2.10GHz | | | | Paradiso et al. (2019) | Virtual CPU 2.59GHz | |
| | | | | | | | | | | |
| C | 25 | 16 | 1.91 | 16 | 420 | 0.38 | 16 | 14 |
| R | 25 | 22 | 0.76 | 22 | 33 | 0.25 | 22 | 2 |
| RC | 25 | 16 | 2.35 | 11 | 18 | 0.49 | 16 | 2 |
| | | | | | | | | | | |
| C | 40 | 16 | 1.25 | 13 | 511 | 0.48 | 16 | 151 |
| R | 40 | 19 | 1.43 | 12 | 1,738 | 1.06 | 19 | 220 |
| RC | 40 | 2 | - | 0 | - | 0.67 | 2 | 11 |
| | | | | | | | | | | |
| C | 50 | 16 | | | | 0.22 | 16 | 62 |
| R | 50 | 22 | | | | 0.22 | 22 | 20 |
| RC | 50 | 16 | | | | 0.28 | 16 | 11 |
Computational Results

MTVRP with Time Windows, Loading Times, Limited Trip Duration

<table>
<thead>
<tr>
<th>Group</th>
<th></th>
<th></th>
<th>Trip-based</th>
<th></th>
<th></th>
<th>Structure-based</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(</td>
<td>N)</td>
<td>Inst</td>
<td>%Gap</td>
<td>Opt</td>
<td>(T_{\text{tot}})</td>
<td>%Gap</td>
<td>Opt</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>16</td>
<td>1.91</td>
<td>16</td>
<td>420</td>
<td>0.38</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td>22</td>
<td>0.76</td>
<td>22</td>
<td>33</td>
<td>0.25</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>RC</td>
<td>25</td>
<td>16</td>
<td>2.35</td>
<td>11</td>
<td>18</td>
<td>0.49</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>16</td>
<td>1.25</td>
<td>13</td>
<td>511</td>
<td>0.48</td>
<td>16</td>
<td>151</td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td>19</td>
<td>1.43</td>
<td>12</td>
<td>1,738</td>
<td>1.06</td>
<td>19</td>
<td>220</td>
</tr>
<tr>
<td>RC</td>
<td>40</td>
<td>2</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.67</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>16</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.22</td>
<td>16</td>
<td>62</td>
</tr>
<tr>
<td>R</td>
<td>50</td>
<td>22</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.22</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>RC</td>
<td>50</td>
<td>16</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0.28</td>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>
Conclusions

- Increasing **interest in MTVRPs**, mainly motivated by city logistics and last-mile delivery
- **Trip-based** and **journey-based** models are effective to solve the MTVRP
- To handle **side constraints**, **structure-based** models seem the better choice, even better than set-partitioning models
Conclusions

- Increasing interest in MTVRPs, mainly motivated by city logistics and last-mile delivery
- Trip-based and journey-based models are effective to solve the MTVRP
- To handle side constraints, structure-based models seem the better choice, even better than set-partitioning models
Conclusions

• Increasing interest in MTVRPs, mainly motivated by city logistics and last-mile delivery
• Trip-based and journey-based models are effective to solve the MTVRP
• To handle side constraints, structure-based models seem the better choice, even better than set-partitioning models
Open Questions

- Research on MTVRPs is scarce and 50-customer instances are already challenging, how can large instances be solved?
- Are there better models (maybe models not based on arcs, structures, trips, or journeys)?
- Can we use models not based on arcs or routes to solve other VRPs?

Open Questions

• Research on MTVRPs is scarce and 50-customer instances are already challenging, how can large instances be solved?
• Are there better models (maybe models not based on arcs, structures, trips, or journeys)?
• Can we use models not based on arcs or routes to solve other VRPs?

Open Questions

• Research on MTVRPs is scarce and 50-customer instances are already challenging, how can large instances be solved?
• Are there better models (maybe models not based on arcs, structures, trips, or journeys)?
• Can we use models not based on arcs or routes to solve other VRPs?

Open Questions

- Research on MTVRPs is scarce and 50-customer instances are already challenging, how can large instances be solved?
- Are there better models (maybe models not based on arcs, structures, trips, or journeys)?
- Can we use models not based on arcs or routes to solve other VRPs?

References I

