
Implementing 
efficient code without 

dying in the effort

Jesús Sánchez-Oro



Outline

1 Motivation

2 Code organization

3 Data structures

4 Test Problem: TSP

5 Code improvements

6 Parallelization

7 Conclussions

VEROLOG 2019 (SEVILLE) 2



Outline

1 Motivation

2 Code organization

3 Data structures

4 Test Problem: TSP

5 Code improvements

6 Parallelization

7 Conclussions

VEROLOG 2019 (SEVILLE) 3



Why I started working in routing problems?

VEROLOG 2019 (SEVILLE) 4



Motivation

•Two metrics are considered to evaluate the 
quality of an algorithm:
•Objective function value
•Computing time

VEROLOG 2019 (SEVILLE) 5



How relevant is the programmer?

•We start from a high quality algorithm.

•Otherwise, the programmer has nothing to do.

VEROLOG 2019 (SEVILLE) 6



How relevant is the programmer?

• If the algorithm is good, but the programmer is 
not…

VEROLOG 2019 (SEVILLE) 7



How relevant is the programmer?

• If the algorithm is good, and the programmer is 
reasonable…

VEROLOG 2019 (SEVILLE) 8



How relevant is the programmer?

• If both the algorithm and the programmer are 
excellent …

VEROLOG 2019 (SEVILLE) 9



How relevant is the programmer?

• If the programmer is trying new things …

I’m Batman

VEROLOG 2019 (SEVILLE) 10



Select a programming language

VEROLOG 2019 (SEVILLE) 11



Which is the best programming language?

•The best programming language does not exist
•Otherwise, all of us will use the same language

•What are we looking for in a programming 
language?
•Easy to learn
•Performance
•Debugging
•External libraries

VEROLOG 2019 (SEVILLE) 12



Why did I choose Java?

• It is easy to learn Java from scratch.

• JVM is responsible for memory 
management.

•Designed for Object Oriented 
Programming.

•A good code in Java is not necessarily 
slower than one in C/C++.

VEROLOG 2019 (SEVILLE) 13



Why did I choose Java?

•Developing time in Java is rather smaller than 
in other languages.

• It has a lot of external libraries to help us 
with the code. 

https://www.tiobe.com/tiobe-index/

VEROLOG 2019 (SEVILLE) 14

https://www.tiobe.com/tiobe-index/


Outline

1 Motivation

2 Code organization

3 Data structures

4 Test Problem: TSP

5 Code improvements

6 Parallelization

7 Conclussions

VEROLOG 2019 (SEVILLE) 15



Code structure

•When we deal with a new problem, we first need 
to think about code structure.

• If the problem is similar to another one in which 
we have previously worked the structure will 
be similar.

VEROLOG 2019 (SEVILLE) 16



Code structure

•Most of the features that we use for a certain 
problem are repeated for the rest of the 
problems.

• Is it really necessary to repeat the same again 
and again? 

VEROLOG 2019 (SEVILLE) 17



Code structure

•First option
•Copy and paste the last project in which we have 
been working and modify the code

VEROLOG 2019 (SEVILLE) 18



Code structure

•Second option
•Take advantage of the language features in order to 
avoid repeating code.

VEROLOG 2019 (SEVILLE) 19



Code structure

•Proposal: create a library which contains the 
basic functionality that will be required in any 
project.
•Execute an algorithm over a set of instances in a folder.
•Generate a table with the obtained results.
•Control the computing time.
•…

VEROLOG 2019 (SEVILLE) 20



GrafoOptiLib

VEROLOG 2019 (SEVILLE) 21



Outline

1 Motivation

2 Code organization

3 Data structures

4 Test Problem: TSP

5 Code improvements

6 Parallelization

7 Conclussions

VEROLOG 2019 (SEVILLE) 22



Data Structures

•DS define the data organization of our 
problem.

• If we choose the correct DS, we will be able to 
add, modify or remove data efficiently.

•DS are usually one of the key parts of our 
code.

VEROLOG 2019 (SEVILLE) 23



Data Structures

•Most languages offer their own 
implementations of several data structures, 
so we do not usually need to implement data 
structures.

VEROLOG 2019 (SEVILLE) 24



Data Structures

•However, if we need more complex or 
specific structures, we will need to go deeper 
and implement them.

VEROLOG 2019 (SEVILLE) 25



Data Structures

•We usually believe that the programming language 
is the key for developing a fast algorithm.

•Nevertheless, the actual key is the complexity
of the data structures considered.

VEROLOG 2019 (SEVILLE) 26



Data Structures

• If we perform many operations over the 
same data structure, we would like to make it as 
efficient as possible.

•We need to focus on reducing the 
complexity of the most common operations.
•Which is the cost of inserting / searching /removing an 
element from a data structure?

VEROLOG 2019 (SEVILLE) 27



Is it really so important?

•We will consider 1000 elements.

•Test:
•Search for a random element

VEROLOG 2019 (SEVILLE) 28



Why these results?

Arrays
•Access to a given position in constant time

• Improvement in memory storage

VEROLOG 2019 (SEVILLE)

5 4 3 1 2
0 1 2 3 4 5

29



Why these results?

ArrayList
•Similar to arrays in representation.

•Overhead to resize the data structure and offer 
more functionality (contains).

5 4 3 1 2
0 1 2 3 4 5

VEROLOG 2019 (SEVILLE) 30



Why these results?

LinkedList
•Access to the first and last elements on the 
list.

• If we need to access 𝑘 element, we need to move 
𝑘 positions starting at the first one.

5 4 3 1 2

VEROLOG 2019 (SEVILLE) 31



Why these results?

HashSet
•Each element is identified by a unique 
number.
•We need to define the mapping between element and 
its corresponding number (hash code).

•Check if an element is in the DS in constant 
time.

1 2 3 4 5

51 2 3 4

VEROLOG 2019 (SEVILLE) 32



What data structure should I use?

•There is not a best data structure.

• It totally depends on the most common 
operations performed in your code.

•THINK BEFORE CODING!!!

VEROLOG 2019 (SEVILLE) 33



Outline

1 Motivation

2 Code organization

3 Data structures

4 Test Problem: TSP

5 Code improvements

6 Parallelization

7 Conclussions

VEROLOG 2019 (SEVILLE) 34



Test Problem: TSP

•Input: a set of 𝑛 locations and the distance 
between each pair of locations.

•Objective: find the shortest possible route that 
visits every city exactly once and returns to the 
starting point.
•Starting point is 
always the first node.

VEROLOG 2019 (SEVILLE) 35



Test Problem: TSP

•What do we have to know about the instance?
•Number of cities
•Distances between cities

VEROLOG 2019 (SEVILLE) 36



Test Problem: TSP

•What do we have to know about the solution?
•Which instance are we solving?
•Which is the selected route?
•Which is the total distance for the route?

VEROLOG 2019 (SEVILLE) 37



Test Problem: TSP

•Two basic movements:
•Swap between two cities

•Insertion of a city in a different position

1 2 3 4 5 6 1 5 3 4 2 6Swap(2,5)

1 2 3 4 5 6 1 3 4 5 2 6Insert(2,5)

VEROLOG 2019 (SEVILLE) 38



Test Problem: TSP

•Greedy Randomized Adaptive Search Procedure
•Construction phase
• Improvement phase

VEROLOG 2019 (SEVILLE) 39



Test Problem: TSP

1. 𝐶𝐿 ← 𝑣 ∈ 𝑉

2. 𝑣, ← Random 𝐶𝐿

3. 𝑆 ← 𝑣,

4. 𝐶𝐿 ← 𝐶𝐿 ∖ 𝑣,
5. 𝐰𝐡𝐢𝐥𝐞 𝐶𝐿 ≠ ∅ 𝐝𝐨

6. 𝑔BCD ← min
F∈GH

𝑔 𝑣

7. 𝑔BCD ← max
F∈GH

𝑔 𝑣

8. 𝜇 ← 𝑔BKL + 𝛼 · 𝑔BCD − 𝑔BKL
9. 𝑅𝐶𝐿 ← 𝑣 ∈ 𝐶𝐿 ∶ 𝑔 𝑣 ≤ 𝜇

10. 𝑣T ← Random 𝑅𝐶𝐿

11. 𝑆 ← 𝑆 ∪ 𝑣T
12. 𝐶𝐿 ← 𝐶𝐿 ∖ 𝑣T
13. 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞

14. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑆

VEROLOG 2019 (SEVILLE) 40



Test Problem: TSP

1. 𝐶𝐿 ← 𝑣 ∈ 𝑉

2. 𝑣, ← Random 𝐶𝐿

3. 𝑆 ← 𝑣,

4. 𝐶𝐿 ← 𝐶𝐿 ∖ 𝑣,
5. 𝐰𝐡𝐢𝐥𝐞 𝐶𝐿 ≠ ∅ 𝐝𝐨

6. 𝑔BCD ← min
F∈GH

𝑔 𝑣

7. 𝑔BCD ← max
F∈GH

𝑔 𝑣

8. 𝜇 ← 𝑔BKL + 𝛼 · 𝑔BCD − 𝑔BKL
9. 𝑅𝐶𝐿 ← 𝑣 ∈ 𝐶𝐿 ∶ 𝑔 𝑣 ≤ 𝜇

10. 𝑣T ← Random 𝑅𝐶𝐿

11. 𝑆 ← 𝑆 ∪ 𝑣T
12. 𝐶𝐿 ← 𝐶𝐿 ∖ 𝑣T
13. 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞

14. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑆

The Candidate List contains all the nodes
but the first one, which is randomly chosen.

VEROLOG 2019 (SEVILLE) 41



Test Problem: TSP

1. 𝐶𝐿 ← 𝑣 ∈ 𝑉

2. 𝑣, ← Random 𝐶𝐿

3. 𝑆 ← 𝑣,

4. 𝐶𝐿 ← 𝐶𝐿 ∖ 𝑣,
5. 𝐰𝐡𝐢𝐥𝐞 𝐶𝐿 ≠ ∅ 𝐝𝐨

6. 𝑔BCD ← min
F∈GH

𝑔 𝑣

7. 𝑔BCD ← max
F∈GH

𝑔 𝑣

8. 𝜇 ← 𝑔BKL + 𝛼 · 𝑔BCD − 𝑔BKL
9. 𝑅𝐶𝐿 ← 𝑣 ∈ 𝐶𝐿 ∶ 𝑔 𝑣 ≤ 𝜇

10. 𝑣T ← Random 𝑅𝐶𝐿

11. 𝑆 ← 𝑆 ∪ 𝑣T
12. 𝐶𝐿 ← 𝐶𝐿 ∖ 𝑣T
13. 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞

14. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑆

The Restricted Candidate List contains all the 
nodes whose objective function value is better 
than a certain threshold.

VEROLOG 2019 (SEVILLE) 42



Test Problem: TSP

1. 𝐶𝐿 ← 𝑣 ∈ 𝑉

2. 𝑣, ← Random 𝐶𝐿

3. 𝑆 ← 𝑣,

4. 𝐶𝐿 ← 𝐶𝐿 ∖ 𝑣,
5. 𝐰𝐡𝐢𝐥𝐞 𝐶𝐿 ≠ ∅ 𝐝𝐨

6. 𝑔BCD ← min
F∈GH

𝑔 𝑣

7. 𝑔BCD ← max
F∈GH

𝑔 𝑣

8. 𝜇 ← 𝑔BKL + 𝛼 · 𝑔BCD − 𝑔BKL
9. 𝑅𝐶𝐿 ← 𝑣 ∈ 𝐶𝐿 ∶ 𝑔 𝑣 ≤ 𝜇

10. 𝑣T ← Random 𝑅𝐶𝐿

11. 𝑆 ← 𝑆 ∪ 𝑣T
12. 𝐶𝐿 ← 𝐶𝐿 ∖ 𝑣T
13. 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞

14. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑆

A random node from the RCL is selected as the 
next city of the route, updating the CL

VEROLOG 2019 (SEVILLE) 43



Test Problem: TSP

Improvement phase
•We test two local search methods, one for each 
movement.

•First improvement approach.

•Random exploration of the neighborhood.

VEROLOG 2019 (SEVILLE) 44



Test Problem: TSP

•Let’s test a direct implementation without 
any improvement.

•We will try different data structures to represent 
a route.

VEROLOG 2019 (SEVILLE) 45



Outline

1 Motivation

2 Code organization

3 Data structures

4 Test Problem: TSP

5 Code improvements

6 Parallelization

7 Conclussions

VEROLOG 2019 (SEVILLE) 46



Code improvements

•This code is too slow!!

•Bad performance is usually related to repeating 
computations unnecessarily.

• It is very common in the objective function 
evaluation.

VEROLOG 2019 (SEVILLE) 47



Code improvements

• Is it really necessary to evaluate the complete 
objective function after performing a single 
movement?

VEROLOG 2019 (SEVILLE) 48



Code improvements

•We need to study which evaluations are strictly 
necessary to save computing time.

•For instance, in the TSP:
•How can I update the total distance when adding a 
new city?
•How does a movement affect the objective function 
value?

VEROLOG 2019 (SEVILLE) 49



Code improvements

•When adding a new city:

1 3 45

VEROLOG 2019 (SEVILLE) 50



Code improvements

•When adding a new city:

1 3 45

1 23 45

VEROLOG 2019 (SEVILLE) 51



Code improvements

•When swapping two cities:
•Swap(2,3)

1 23 45

VEROLOG 2019 (SEVILLE) 52



Code improvements

•When swapping two cities:
•Swap(2,3)

1 23 45

1 23 45

VEROLOG 2019 (SEVILLE) 53



Code improvements

•When inserting a city in a different position:
• Insert(3,2)

1 23 45

VEROLOG 2019 (SEVILLE) 54



Code improvements

•When inserting a city in a different position:
• Insert(3,2)

1 23 45

1 23 45

VEROLOG 2019 (SEVILLE) 55



Code improvements

•We must analyze the complexity of the most 
common operations in the data structures.

•Complexity of adding / removing elements in:
•ArrayList
•LinkedList

VEROLOG 2019 (SEVILLE) 56



Code improvements

•LinkedList should be the best data structure for 
the problem.

•However, Java implementation of LinkedList offers
poor performance.

VEROLOG 2019 (SEVILLE) 57



Code improvements

• Is it enough for us?

VEROLOG 2019 (SEVILLE) 58



Code improvements

•What if we implement a new LinkedList which 
overcomes the disadvantages of the original one?

VEROLOG 2019 (SEVILLE) 59



Code improvements

•MyLinkedList uses two integer arrays to represent 
a route:
•prev[v] indicates the city located just before v
•next[v] indicates the city located just after v

•All the operations are performed in constant
time.

VEROLOG 2019 (SEVILLE) 60



Code improvements

1 23 45

0 4 1 5 30

3 1 5 2 40

prev

next

VEROLOG 2019 (SEVILLE) 61

0 1 2 3 4 5



Outline

1 Motivation

2 Code organization

3 Data structures

4 Test Problem: TSP

5 Code improvements

6 Parallelization

7 Conclussions

VEROLOG 2019 (SEVILLE) 62



Parallelization

•Most of our computers have more than one 
core.
• If not, please go now and renew your computer.

•Then, why are we still developing sequential 
code?

VEROLOG 2019 (SEVILLE) 63



Parallelization

• In a sequential program we have a single 
process and a single control flow.

• In a parallel program we have two or more 
processes cooperating to finish a task.
•We must ensure a correct communication and 
synchronization among processes.

VEROLOG 2019 (SEVILLE) 64



Parallelization

•Be careful! Power is nothing without control.

•We should learn how to code parallel programs.
•Otherwise, it could be slower than the
sequential version

VEROLOG 2019 (SEVILLE) 65



Memory model

•We use a shared memory model.
•A single memory is shared among all the 
processors

𝐶𝑃𝑈\ 𝐶𝑃𝑈] 𝐶𝑃𝑈^

Main memory

Cache Cache Cache

VEROLOG 2019 (SEVILLE) 66



How can I parallelize code?

•Using a compiler that automatically convert 
sequential code in parallel code.

•Advantages:
•We do nothing.

•Disadvantages:
•Not available for all programming languages.
•The parallelization achieved is not the best one.

VEROLOG 2019 (SEVILLE) 67



How can I parallelize code?

•Using operating system resources: 
processes, threads, semaphores, files, ...

•Advantages:
•Available in every programming language.

•Disadvantages:
•Ridiculously hard

VEROLOG 2019 (SEVILLE) 68



How can I parallelize code?

•Using libraries that simplify the parallelization, 
like OpenMP.

•Advantages:
•We just need to slightly modify our sequential code.

•Disadvantages:
•Not available for every language.

VEROLOG 2019 (SEVILLE) 69



How can I parallelize code?

•Using a programming language prepared for 
parallelism.

•Advantages:
•Every modern computer language is prepared for it.

•Disadvantages:
•We need to deeply modify our code.

VEROLOG 2019 (SEVILLE) 70



Parallelization in Java

• Java is prepared for developing parallel code 
easily.

•We can use the low level tools, but Java offers a
set of high level tools to parallelize code 
ignoring details.

VEROLOG 2019 (SEVILLE) 71



How can I parallelize a metaheuristic?

•Parallelize independent code fragments, without 
algorithm redesign.
•Small scientific contribution.
•Very easy.

•Redesign the algorithm to make the most of 
available hardware.
•Relevant scientific contribution.
•Harder.

VEROLOG 2019 (SEVILLE) 72



Java Thread Pool

VEROLOG 2019 (SEVILLE) 73



Want more parallelism?

•The second option implies redesigning the 
algorithm in a parallel way.

•Most of the metaheuristics already have a 
parallel design.
• Alba, E. (2005). Parallel metaheuristics: a new class of algorithms (Vol. 47). 

John Wiley & Sons.
• Crainic, T. G., & Toulouse, M. (2010). Parallel meta-heuristics. In Handbook of 

metaheuristics (pp. 497-541). Springer, Boston, MA.
• Crainic, T. G. (2016). Parallel Meta-heuristic Search. Handbook of Heuristics, 

1-39.

VEROLOG 2019 (SEVILLE) 74



Parallelization objectives

•Parallelizing does not necessarily implies 
reducing computing time.

• It can be also used for exploring a wider 
portion of the search space.
•We can guide the search in several directions 
simultaneously, instead of following a single direction.

VEROLOG 2019 (SEVILLE) 75



Outline

1 Motivation

2 Code organization

3 Data structures

4 Test Problem: TSP

5 Code improvements

6 Parallelization

7 Conclussions

VEROLOG 2019 (SEVILLE) 76



Which language should I use?

•Look for:
•Smooth learning curve.
•Efficiency.
•External libraries.
•Documentation, support forums, …
•Parallelizing possibilities.
• Is it used in the heuristics community?

VEROLOG 2019 (SEVILLE) 77



How should I organize the code?

•We must waste time deciding the structure of 
our code.

• If we usually work on similar problems, we should 
think about developing our own library to 
avoid repeating common tasks.

VEROLOG 2019 (SEVILLE) 78



Which is the key to efficiency?

•We should know the data structures that we 
use.

•Incremental evaluation of the objective
function is one of the first optimizations to 
consider.

•Can I use an alternative objective 
function?

•Should I try a parallel design?

VEROLOG 2019 (SEVILLE) 79



Thanks!!

VEROLOG 2019 (SEVILLE) 80



Implementing
efficient code without

dying in the effort

Jesús Sánchez-Oro


